Integrated Calculation Method of Pressure and Formation Parameters in Gas Injection Process of Underground Gas Storage
-
摘要:
为了掌握地下储气库注气过程中的压力动态变化情况,解决持续注气导致的地层参数难以确定的问题,依据现场静、动态资料,基于一种改进粒子群优化算法,综合储层压力、井底压力和井口压力的计算方法,建立了一种地下储气库注气过程一体化压力及地层参数计算方法。首先,利用计算储层压力、井底压力和井口压力的方法计算出井口压力;然后,应用改进粒子群优化算法,不断调整、优化压力和地层参数,使计算的井口压力与实测井口压力达到最优拟合,进而得到储层压力、井底压力,以及储层平均渗透率、探测半径等地层参数。利用该方法计算了呼图壁储气库3口注采井的井口压力和储层的平均渗透率,3口注采井计算井口压力与实测井口压力的决定系数分别为0.988 9,0.989 3和0.978 4,计算出的储层渗透率与试井解释的渗透率基本一致,说明该计算方法的计算结果可靠。研究结果表明,利用地下储气库注气过程一体化压力及地层参数计算方法,可以了解地下储气库注气过程中的压力变化情况,有助于指导地下储气库的安全运行。
Abstract:To fully grasp the dynamic pressure variations during gas injection of underground gas storage (UGS) and resolve the difficulty in determining formation parameters caused by continuous gas injection, an integrated calculation method of pressure and formation parameters in gas injection process of UGS was developed according to on-site static and dynamic data. The method was based on an improved particle swarm optimization (PSO) algorithm and integrated the calculation methods of reservoir pressure, bottom-hole pressure, and wellhead pressure. The wellhead pressure was first calculated by these calculation methods, and improved PSO algorithm was then employed to continuously adjust and optimize pressure and formation parameters. In this way, the obtained wellhead pressure could be fitted with measured wellhead pressure to the optimal extent, which could further lead to the determination of formation parameters such as reservoir pressure, bottom-hole pressure, average permeability of reservoirs and investigation radius. The integrated method was used to calculate the wellhead pressure of three injection and production wells and the average permeability of reservoirs. The results show that the determination coefficients for calculated and measured wellhead pressure of the three wells were 0.9889, 0.9893, and 0.9784, and the calculated reservoir permeability was consistent with that obtained from well test interpretation. This indicates that the developed method can produce reliable results. The research results demonstrate that the integrated method can be used to learn the pressure variations during the gas injection process of UGS and is conducive to guiding the safe operation of UGS.
-
-
表 1 3口实例井的基础参数
Table 1 Basic parameters of three example wells
井名 井深/m 井筒有效
半径/m孔隙度 天然气
相对密度天然气黏度/
(mPa·s)产能方程
类型产能系数A(C) 产能系数B(n) X1井 3 529.00 0.076 0.165 0.78 0.020 二项式 0.004 3 0.030 4 X2井 3 553.75 0.076 0.155 0.65 0.020 二项式 0.386 2 0.031 9 X3井 3 582.00 0.088 0.209 0.75 0.015 指数式 1.391 4 0.840 8 表 2 粒子群优化算法结果对比及地层参数
Table 2 Comparison of results obtained from PSO algorithm and formation parameters
井名 算法 平均渗透率/mD 探测
半径/m相对误差①,% 决定系数② 运行
时间/s注气前期 注气后期 X1井 基本粒子群优化算法 10.48 15.01 305.59 0.12 0.988 9 1 657.35 改进粒子群优化算法 10.48 15.01 305.59 0.12 0.988 9 1 445.51 X2井 改进粒子群优化算法 11.25 19.99 294.28 0.24 0.989 3 857.23 X3井 改进粒子群优化算法 10.00 29.99 301.26 0.11 0.978 4 418.35 注:①和②分别为计算井口油压和实测井口油压的相对误差和决定系数。 -
[1] 袁光杰,张弘,金根泰,等. 我国地下储气库钻井完井技术现状与发展建议[J]. 石油钻探技术,2020,48(3):1–7. YUAN Guangjie, ZHANG Hong, JIN Gentai, et al. Current status and development suggestions in drilling and completion technology of underground gas storage in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 1–7.
[2] 朱静,张福兴,杨显志,等. 压降试井技术在辽河油田S储气库中的应用[J]. 石油钻采工艺,2021,43(5):682–686. ZHU Jing, ZHANG Fuxing, YANG Xianzhi, et al. Application of drawdown test technology in SL underground gas storage of Liaohe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(5): 682–686.
[3] 周军,彭井宏,罗 莎,等. 考虑安全稳定运行的大型枯竭气藏储气库注采优化[J]. 特种油气藏,2021,28(5):76–82. ZHOU Jun, PENG Jinghong, LUO Sha, et al. Optimization of gas injection and production in gas storage based on large depleted gas reservoir with consideration of safe and stable operation[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 76–82.
[4] 舒刚,刘健,冯逢,等. 储气库注采井水泥环破坏机理实验研究[J]. 钻井液与完井液,2020,37(4):507–511. SHU Gang, LIU Jian, FENG Feng, et al. Experimental study on failure mechanism of cement sheath in injection production well of gas storage[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 507–511.
[5] 于本福,闫相祯,杨秀娟,等. 考虑储层孔隙介质分形特点的衰竭气藏储气库储层压力分布预测[J]. 石油学报,2013,34(5):1017–1022. YU Benfu, YAN Xiangzhen, YANG Xiujuan, et al. Dynamic reservoir pressure prediction of depleted reservoir gas storage considering the fractal feature of porous medium[J]. Acta Petrolei Sinica, 2013, 34(5): 1017–1022.
[6] 唐立根,王皆明,丁国生,等. 基于开发资料预测气藏改建储气库后井底流入动态[J]. 石油勘探与开发,2016,43(1):127–130. TANG Ligen, WANG Jieming, DING Guosheng, et al. Downhole inflow-performance forecast for underground gas storage based on gas reservoir development data[J]. Petroleum Exploration and Development, 2016, 43(1): 127–130.
[7] 岳三琪,付玉,伍勇,等. 地下储气库注采井井底压力计算研究[J]. 油气藏评价与开发,2017,7(3):28–33. YUE Sanqi, FU Yu, WU Yong, et al. Bottom hole pressure calculation of injection and production wells of underground gas storage[J]. Reservoir Evaluation and Development, 2017, 7(3): 28–33.
[8] 王清辉,朱明,冯进,等. 基于渗透率合成技术的砂岩油藏产能预测方法[J]. 石油钻探技术,2021,49(6):105–112. WANG Qinghui, ZHU Ming, FENG Jin, et al. A method for predicting productivity of sandstone reservoirs based on permeability synthesis technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105–112.
[9] 陈显学. 底水气藏型储气库注采渗流规律实验[J]. 特种油气藏,2022,29(4):101–106. CHEN Xianxue. Test on the seepage pattern in injection and production of gas storage in bottom-water gas reservoir[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 101–106.
[10] 张广权,范照伟,曾大乾,等. 交变载荷下储气库储层与盖层损伤规律[J]. 断块油气田,2021,28(6):769–774. ZHANG Guangquan, FAN Zhaowei, ZENG Daqian, et al. Damage law of reservoir and cap rock of gas storage under alternating load[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 769–774.
[11] 杜果,杨丹,周兴燕,等. 考虑垂向裂缝发育的火山岩气藏部分打开井试井分析方法[J]. 天然气地球科学,2020,31(10):1367–1374. DU Guo, YANG Dan, ZHOU Xingyan, et al. Well test analytical model for a partial opening vertical well in enriched vertical fracture tight gas volcanic reservoir[J]. Natural Gas Geoscience, 2020, 31(10): 1367–1374.
[12] 郝少伟,李勇军,赵尚弘,等. 基于改进粒子群算法的多载波NOMA功率分配策略[J]. 电子学报,2020,48(10):2009–2016. HAO Shaowei, LI Yongjun, ZHAO Shanghong, et al. Multicarrier NOMA power allocation strategy based on improved particle swarm optimization algorithm[J]. Acta Electronica Sinica, 2020, 48(10): 2009–2016.
[13] 陈小龙,李宜强,管错,等. 基于量纲分析的优化神经网络模型预测GAGD非混相开发油藏采收率[J]. 石油科学通报,2019,4(3):288–299. CHEN Xiaolong, LI Yiqiang, GUAN Cuo, et al. An optimized neural network prediction model for gas assisted gravity drainage recovery based on dimensional analysis[J]. Petroleum Science Bulletin, 2019, 4(3): 288–299.
[14] 刘智颖,张柏桥,许巍,等. 焦石坝地区页岩Cole-Cole模型参数的快速计算方法[J]. 油气藏评价与开发,2020,10(5):42–48. LIU Zhiying, ZHANG Baiqiao, XU Wei, et al. A fast computing method for rock electric parameters of Cole-Cole model in Jiaoshiba Zone[J]. Reservoir Evaluation and Development, 2020, 10(5): 42–48.
[15] KENNEDY J. Particle swarm optimization[C]//Encyclopedia of machine learning. New York: Springer, 2011: 177−191.
[16] SHI Y, Eberhart R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360),1998: 69−73.
[17] 王怡. 页岩气藏裂缝区地层孔隙压力准确求取方法[J]. 石油钻探技术,2020,48(3):29–34. WANG Yi. A method for accurate calculation of pore pressure in fractured formations of shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29–34.
[18] 胥洪成,张士杰,李翔,等. 气藏改建储气库下限压力设计新方法[J]. 天然气地球科学,2020,31(11):1648–1653. XU Hongcheng, ZHANG Shijie, LI Xiang, et al. A new design method of minimum storage pressure of underground gas storage rebuilt from gas reservoir[J]. Natural Gas Geoscience, 2020, 31(11): 1648–1653.
[19] 李江,陈先超,高平,等. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术,2021,49(3):111–116. LI Jiang, CHEN Xianchao, GAO Ping, et al. A pseudo-steady-state productivity prediction method for fractured carbonate gas wells considering stress-sensitivity effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111–116.
[20] 游利军,邵佳新,高新平,等. 储气库注采过程中有效应力变化模拟试验[J]. 石油钻探技术,2020,48(6):104–108. YOU Lijun, SHAO Jiaxin, GAO Xinping, et al. Simulation tests of effective stress changes in gas storage during injection and production[J]. Petroleum Drilling Techniques, 2020, 48(6): 104–108.
[21] 余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20. YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in Arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20.
[22] 张俊法,曾大乾,张广权,等. 超高压气藏改建储气库注采能力及库容评价:以川东北清溪储气库为例[J]. 断块油气田,2021,28(6):775–780. ZHANG Junfa, ZENG Daqian, ZHANG Guanquan, et al. Injection-productivity and storage capacity evaluation for rebuilding gas storage based on ultra-high pressure gas reservoir:a case study of Qingxi gas storage in Northeast Sichuan[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 775–780.
[23] 张辉,赵晨曦,王杨,等. 基于改进粒子群算法的空间众包任务分配模型[J]. 计算机应用研究,2020,37(9):2698–2700. ZHANG Hui, ZHAO Chenxi, WANG Yang, et al. Spatial crowdsourcing task allocation model based on improved particle swarm optimization[J]. Application Research of Computers, 2020, 37(9): 2698–2700.
[24] RODRIGUES L L, SOLÍS-CHAVES J S, VILCANQUI O A C, et al. Predictive incremental vector control for DFIG with weighted-dynamic objective constraint-handling method-PSO weighting matrices design[J]. IEEE Access, 2020, 8: 114112–114122. doi: 10.1109/ACCESS.2020.3003285
[25] MADVAR H R, DEHGHANI M, MEMARZADEH R, et al. Derivation of optimized equations for estimation of dispersion coefficient in natural streams using hybridized ANN with PSO and CSO algorithms[J]. IEEE Access, 2020, 8: 156582–156599. doi: 10.1109/ACCESS.2020.3019362
[26] 葛家理. 现代油藏渗流力学原理[M]. 北京: 石油工业出版社, 2001. GE Jiali. The modern mechanics of fluid flow oil reservoir[M]. Beijing: Petroleum Industry Press, 2001.
[27] 李士伦. 天然气工程[M]. 北京: 石油工业出版社, 2008. LI Shilun. Natural gas engineering[M]. Beijing: Petroleum Industry Press, 2008.
[28] 刘国良,廖伟,张涛,等. 呼图壁大型储气库扩容提采关键技术研究[J]. 中外能源,2019,24(4):46–53. LIU Guoliang, LIAO Wei, ZHANG Tao, et al. Research on key technologies for dilatancy and recovery improving in Hutubi large-scale gas storage[J]. Sino-Global Energy, 2019, 24(4): 46–53.
-
期刊类型引用(33)
1. 肖沣峰,杨丽丽,吴家乐,冯尚江,邱士鑫,蒋官澄. 蓖麻油基环保水性聚氨酯成膜剂CWPU. 钻井液与完井液. 2025(02): 201-208 . 百度学术
2. 宋瀚轩,叶艳,郑连杰,孙振玮,周童,张謦文. 钻井液微纳米封堵性能评价方法研究进展. 应用化工. 2024(02): 383-385 . 百度学术
3. 李成,李伟,王波,张文哲,李锦锋,王军,常世豪. 微纳米孔缝封堵评价方法研究进展与展望. 科技通报. 2023(01): 18-24+31 . 百度学术
4. 孙志刚,李骏函,孙明杰,张茂稳,王立锋. 梨树断陷致密承压封堵钻井液技术研究. 广州化工. 2023(04): 186-188 . 百度学术
5. 李雨洋. 钻井液封堵性能对泥页岩井壁稳定的影响研究. 石化技术. 2023(05): 148-150 . 百度学术
6. 侯杰,谷玉堂,刘兴君,李浩东,李细鸿. 太阳页岩气田海坝区块安全钻进钻井液技术. 采油工程. 2023(01): 44-49+84 . 百度学术
7. 尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 . 百度学术
8. 付毓伟,罗兵,叶政蔚,肖鹏. 水基钻井液用泥页岩抑制剂研究探讨. 石化技术. 2023(11): 177-179 . 百度学术
9. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 . 百度学术
10. 侯杰,尹华洲,刘兴君,杨斯超. 钻采工程钻井液概算编制方法优化设计. 采油工程. 2023(04): 62-64+76 . 百度学术
11. 司西强,王中华,吴柏志. 中国页岩油气水平井水基钻井液技术现状及发展趋势. 精细石油化工进展. 2022(01): 42-50 . 百度学术
12. 徐志勇. 高性能水基钻井液技术研究进展. 西部探矿工程. 2022(05): 76-77+79 . 百度学术
13. 崔磊,董明,石昌森,郭金玉,李艳军,李英武. 高性能仿油基钻井液在L26-PX井的应用. 西部探矿工程. 2022(07): 68-69+73 . 百度学术
14. 何剑平. 水基钻井液用泥页岩抑制剂研究现状. 西部探矿工程. 2022(08): 83-84+87 . 百度学术
15. 徐浩,谢鑫,唐玉华,王媛媛,金晶. 疏水型高性能水基钻井液在YC1侧水平井中的应用研究. 精细石油化工进展. 2022(04): 6-10 . 百度学术
16. 施连海,李春吉. 威HX-4井水平段钻进技术研究与应用. 辽宁化工. 2022(11): 1647-1649+1653 . 百度学术
17. 殷柏涛. 大庆油田致密油藏钻井液技术发展历程. 西部探矿工程. 2022(10): 103-105+108 . 百度学术
18. 王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价. 石油钻探技术. 2021(01): 59-66 . 本站查看
19. 盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 . 百度学术
20. 侯杰,李浩东,于兴东,杨决算. 松辽盆地陆相致密油井壁失稳机理及钻井液对策. 钻井液与完井液. 2021(05): 598-604 . 百度学术
21. 李发华. 大庆油田中浅层水平井水基钻井液技术研究与应用. 西部探矿工程. 2020(03): 121-124 . 百度学术
22. 荣鹏飞. 高性能钻井液技术在大庆QP-X5井中的应用. 西部探矿工程. 2020(03): 71-73 . 百度学术
23. 王晓军,白冬青,孙云超,李晨光,鲁政权,景烨琦,刘畅,蒋立洲. 页岩气井强化封堵全油基钻井液体系——以长宁—威远国家级页岩气示范区威远区块为例. 天然气工业. 2020(06): 107-114 . 百度学术
24. 左富银,苏俊霖,李立宗,赵洋,曾意晴. 有机纳米封堵剂的研究现状及存在问题分析. 化学世界. 2020(11): 733-737 . 百度学术
25. 左富银,苏俊霖,黄进军,李立宗,赵洋,秦祖海. 泥页岩微裂缝微观封堵模拟. 化学世界. 2020(12): 822-828 . 百度学术
26. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 . 百度学术
27. 曾文韬,许明标,由福昌. 泥页岩纳—微米微孔隙封堵评价方法. 能源与环保. 2019(03): 73-76+160 . 百度学术
28. 刘卫东,朱晓虎,蒋文海,樊萍,王悦和,都炳锋. 页岩微裂缝模拟实验评价. 钻采工艺. 2019(02): 104-107+7 . 百度学术
29. 苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 . 百度学术
30. 吴迪. 超低压地层防漏堵漏技术研究与应用. 西部探矿工程. 2019(06): 103-106 . 百度学术
31. 张仁彪. 大庆中浅层低成本水基钻井液技术研究与应用. 石油石化节能. 2019(07): 11-14+2 . 百度学术
32. 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 . 本站查看
33. 杨丽,唐清明,兰林,夏海英,牛静,黄璜. 一种页岩封堵性评价测试方法. 钻井液与完井液. 2018(05): 50-54 . 百度学术
其他类型引用(7)