等离子炬破岩效果室内试验及现场应用建议

于岩, 高锐, 贾玉丹, 乔磊, 周伟

于岩,高锐,贾玉丹,等. 等离子炬破岩效果室内试验及现场应用建议[J]. 石油钻探技术,2022, 50(4):59-63. DOI: 10.11911/syztjs.2022034
引用本文: 于岩,高锐,贾玉丹,等. 等离子炬破岩效果室内试验及现场应用建议[J]. 石油钻探技术,2022, 50(4):59-63. DOI: 10.11911/syztjs.2022034
YU Yan, GAO Rui, JIA Yudan, et al. Laboratory tests on the rock breaking effects of plasma torch and suggestions for field application [J]. Petroleum Drilling Techniques,2022, 50(4):59-63. DOI: 10.11911/syztjs.2022034
Citation: YU Yan, GAO Rui, JIA Yudan, et al. Laboratory tests on the rock breaking effects of plasma torch and suggestions for field application [J]. Petroleum Drilling Techniques,2022, 50(4):59-63. DOI: 10.11911/syztjs.2022034

等离子炬破岩效果室内试验及现场应用建议

基金项目: 河北省产业创新创业团队项目“新奥科技发展有限公司等离子危废处置技术创新团队”(编号:205A3801D)资助
详细信息
    作者简介:

    于岩(1982—),男,河北廊坊人,2004年毕业于河北工业大学自动化专业,工程师,主要从事等离子炬研发工作。E-mail: yuyand@enn.cn。

  • 中图分类号: TE21

Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application

  • 摘要:

    油气资源和深层地热能开发钻井过程中会遇到岩石硬度大、可钻性差等问题,采用传统钻井技术难以提高钻井效率。针对这一问题,分析了等离子炬的破岩原理,认为等离子炬破岩主要有岩石破碎、熔化和蒸发等方式;利用不同厚度的玄武岩和花岗岩岩样,进行了等离子炬破岩效果室内试验,证明等离子炬可以烧穿50 mm厚的玄武岩岩样和30 mm厚的花岗岩岩样,但不能烧穿更厚的岩样。结合试验结果,分析了现场应用等离子炬钻井技术存在的问题,提出了研发建议。研究结果为深层硬地层等离子炬钻井技术的研究与应用提供了技术借鉴。

    Abstract:

    During the development and drilling of oil and gas resources and deep geothermal energy, many problems such as extremely high rock hardness and poor drillability may be encountered, and it is difficult to improve drilling efficiency by traditional drilling techniques. To solve this problem, the principle underlying rock breaking by plasma torch were analyzed. On the basis of it, rock spallation, melting, and evaporation were found to be the main methods for rock breaking. Laboratory tests were carried out to determine the effect of using plasma torch for breaking basalt samples and granite samples with different thicknesses. It was demonstrated that plasma torch can burn through 50 mm thick basalt sample and 30 mm thick granite sample, but could not burn through thicker rock samples. Combined with the test results, the problems existing in the field application of plasma torch drilling technology were analyzed, and research and development suggestions were thereby advanced. The results of this study can provide reference for the research and application of plasma torch drilling in deep hard formations.

  • 图  1   等离子炬工作原理示意

    Figure  1.   Working principle of plasma torch

    图  2   等离子炬的温度场

    Figure  2.   Temperature field of plasma torch

    图  3   等离子炬破岩试验装置

    Figure  3.   Test device of rock breaking by plasma torch

    图  4   等离子炬对玄武岩岩样的破岩效果

    Figure  4.   Rock breaking effect of plasma torch on basalt samples

    图  5   等离子炬对花岗岩样品的破岩效果

    Figure  5.   Rock breaking effect of plasma torch on granite samples

    表  1   岩石熔化和蒸发所需要的能量

    Table  1   Energy required for rock melting and evaporation

    岩石熔化温度/℃蒸发温度/℃熔化比能/
    (kJ·cm−3
    蒸发比能/
    (kJ·cm−3
    花岗岩1 215~1 2602 960~3 2304.3~4.425.7~28.4
    玄武岩984~1 2602 960~3 2304.0~4.824.7~27.5
    下载: 导出CSV

    表  2   等离子炬破岩试验数据及计算的热能效率

    Table  2   Test data of rock breaking by plasma torch and calculated thermal energy efficiency

    岩样孔径/mm 孔深/mm烧穿时间/s热能效率,%
    30 kW50 kW30 kW50 kW30 kW50 kW30 kW50 kW
    50 mm厚玄武岩
    394350501401126.25.7
    100 mm厚玄武岩
    56586374
    30 mm厚花岗岩
    34363030103683.83.9
    100 mm厚花岗岩
    53685159
    下载: 导出CSV
  • [1] 万树德,汪海. 电弧等离子体冶金技术的实际应用[J]. 材料与冶金学报,2013,12(2):81–88.

    WAN Shude, WANG Hai. Application of arc plasma metallurgy technology[J]. Journal of Materials and Metallurgy, 2013, 12(2): 81–88.

    [2]

    ONO K, LIU Zhongjie, ERA T, et al. Development of a plasma MIG welding system for aluminium[J]. Welding International, 2009, 23(11): 805–809. doi: 10.1080/09507110902836945

    [3] 陈明,李琴. 等离子切割工艺在电站锅炉施工中的应用[J]. 电力建设,2014,35(2):120–124. doi: 10.3969/j.issn.1000-7229.2014.02.024

    CHEN Ming, LI Qin. Application of plasma cutting process in power plant boiler construction[J]. Electric Power Construction, 2014, 35(2): 120–124. doi: 10.3969/j.issn.1000-7229.2014.02.024

    [4] 邓春明,周克崧,刘敏,等. 低压等离子喷涂氧化铝涂层的特性[J]. 无机材料学报,2009,24(1):117–121. doi: 10.3724/SP.J.1077.2009.00117

    DENG Chunming, ZHOU Kesong, LIU Min, et al. Characteristics of low pressure plasma sprayed alumina coating[J]. Journal of Inorganic Materials, 2009, 24(1): 117–121. doi: 10.3724/SP.J.1077.2009.00117

    [5] 孙成伟,沈洁,任雪梅,等. 等离子气化技术用于固体废物处理的研究进展[J]. 物理学报,2021,70(9):095210. doi: 10.7498/aps.70.20201676

    SUN Chengwei, SHEN Jie, REN Xuemei, et al. Research progress of plasma gasification technology for solid waste treatment[J]. Acta Physica Sinica, 2021, 70(9): 095210. doi: 10.7498/aps.70.20201676

    [6] 张璐,严建华,杜长明,等. 热等离子体熔融固化模拟医疗废物的研究[J]. 环境科学,2012,33(6):2104–2109.

    ZHANG Lu, YAN Jianhua, DU Changming, et al. Study on vitrification of simulated medical wastes by thermal plasma[J]. Environmental Science, 2012, 33(6): 2104–2109.

    [7]

    TIMOSHKIN I V, MACKERSIE J W, MACGREGOR S J. Plasma channel microhole drilling technology[C]//Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472), Dallas: IEEE, 2003: 1336-1339.

    [8] 张金龙,郭先敏,蔡西茂,等. 等离子通道钻井技术[J]. 石油钻探技术,2013,41(4):64–68. doi: 10.3969/j.issn.1001-0890.2013.04.014

    ZHANG Jinlong, GUO Xianmin, CAI Ximao, et al. Plasma channel drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(4): 64–68. doi: 10.3969/j.issn.1001-0890.2013.04.014

    [9]

    KOCIS I, KRISTOFIC T, GAJDOS M, et al. Utilization of electrical plasma for hard rock drilling and casing milling[R]. SPE 173016, 2015.

    [10]

    KOCIS I, KOCIS I, KRISTOFIC T, et al. Method of disintegrating rock by melting and by synergism of water streams: US 2015/0047901 A1[P]. 2015-02-19.

    [11]

    MACGREGOR S J, TURNBULL S M. Plasma channel drilling process: US7270195 B2[P]. 2007-09-18.

    [12] 陈世和,麻胜荣,邹文洁. 等离子技术在矿山中的应用[J]. 铀矿冶,2006,25(4):173–176. doi: 10.3969/j.issn.1000-8063.2006.04.002

    CHEN Shihe, MA Shengrong, ZOU Wenjie. Application of plasma technology in mines[J]. Uranium Mining and Metallurgy, 2006, 25(4): 173–176. doi: 10.3969/j.issn.1000-8063.2006.04.002

  • 期刊类型引用(8)

    1. 闫玉,黄晶,贾千千,彭莎,朱维奇,王超. 随钻测量仪器中正脉冲发生器旋转阀控制模拟研究. 阀门. 2025(03): 299-304 . 百度学术
    2. 伊明,戴勇,杨焕强,南亚东,冀梦佳,梅云涛. 负压力窗口控压下套管井筒压力控制技术. 石油钻探技术. 2024(01): 17-25 . 本站查看
    3. 张智,向世林,杜威,张万栋,张超,赵苑瑾,杨昆. 海上超高温高压钻井开停泵对瞬态波动压力的影响. 水动力学研究与进展A辑. 2023(02): 293-302 . 百度学术
    4. 左凯,牛贵峰,王川,刘静. 平台扰动下的无隔水管钻井井底压力影响研究. 石油机械. 2022(06): 58-64 . 百度学术
    5. 刘占魁,田林海,吴波,段文博,吴家坤,温春明. 沙湾凹陷西斜坡砂砾岩地层井壁失稳机理及复杂处理. 西部探矿工程. 2021(06): 51-53 . 百度学术
    6. 王江帅,李军,柳贡慧,罗晓坤. 气侵条件下新型双梯度钻井环空出口流量变化规律研究. 石油钻探技术. 2020(04): 43-49 . 本站查看
    7. 王江帅,李军,任美鹏,柳贡慧,张更,张锐尧. 控压钻井条件下漏层位置判别新方法. 石油机械. 2020(09): 15-19 . 百度学术
    8. 巨然,管志川,黄熠,罗鸣,李文拓,邓文彪. 南海莺–琼盆地复杂地层套管–井眼间隙优化. 石油钻探技术. 2019(01): 32-36 . 本站查看

    其他类型引用(4)

图(5)  /  表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  168
  • PDF下载量:  35
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回