厄瓜多尔东部油区平衡法悬空水泥塞固井技术

李万东, 吴阳, 兰小林

李万东,吴阳,兰小林. 厄瓜多尔东部油区平衡法悬空水泥塞固井技术[J]. 石油钻探技术,2022, 50(4):83-89. DOI: 10.11911/syztjs.2022032
引用本文: 李万东,吴阳,兰小林. 厄瓜多尔东部油区平衡法悬空水泥塞固井技术[J]. 石油钻探技术,2022, 50(4):83-89. DOI: 10.11911/syztjs.2022032
LI Wandong, WU Yang, LAN Xiaolin. Cementing technologies of balanced off-bottom cement plugs in Eastern Ecuador [J]. Petroleum Drilling Techniques,2022, 50(4):83-89. DOI: 10.11911/syztjs.2022032
Citation: LI Wandong, WU Yang, LAN Xiaolin. Cementing technologies of balanced off-bottom cement plugs in Eastern Ecuador [J]. Petroleum Drilling Techniques,2022, 50(4):83-89. DOI: 10.11911/syztjs.2022032

厄瓜多尔东部油区平衡法悬空水泥塞固井技术

详细信息
    作者简介:

    李万东(1990—),男,陕西西安人,2012年毕业于中国石油大学(华东)石油工程专业,2015年获中国石油大学(北京)油气井工程专业硕士学位,工程师,主要从事固井技术研究工作。E-mail: 979834445@qq.com。

  • 中图分类号: TE256

Cementing Technologies of Balanced Off-Bottom Cement Plugs in Eastern Ecuador

  • 摘要:

    为了解决厄瓜多尔东部油区打水泥塞作业成功率不高的问题,研究了作业中影响水泥塞稳定性及质量的各种因素,采取针对性措施,形成了厄瓜多尔东部油区平衡法悬空水泥塞固井技术。针对水泥塞与下部钻井液所形成界面不稳定的问题,研制了低密度高强水泥浆和反应性支撑液;针对打水泥塞钻杆与井筒环空间隙过窄导致水泥塞质量不合格的问题,设计了插管工具;针对打水泥塞钻杆下端开口造成水泥浆向下喷射、与钻井液混合严重的问题,研制了分流器工具;针对钻杆内缺乏隔离塞及现有工具成本高、操作复杂等问题,研制了海绵球塞工具。室内试验表明,低密度高强水泥浆密度1.74 kg/L,24 h抗压强度22.5 MPa,满足作业要求;反应性支撑液密度1.44 kg/L,动切力48 Pa,胶凝强度49 Pa,能够有效支撑上部水泥浆;设计的插管、分流器和海绵球塞等工具,能够解决水泥塞放置过程中的质量问题。 现场应用表明,厄瓜多尔东部油区平衡法悬空水泥塞固井技术应用效果良好,能够大幅提高作业成功率,可推广应用。

    Abstract:

    Because the setting cement plugs applied in Ecuador oil field have a low success rate, this study explored the factors that influence the stability and quality of cement plugs during operation. It also took targeted measures to develop the cementing technologies of balanced off-bottom cement plugs in Eastern Ecuador. Specifically, low-density and high-strength cement slurry and viscous reactive pills were prepared to solve the problem of the unstable interface between a cement plug and the lower drilling fluid. A drill pipe with a inserted pipe was designed to address unqualified cement plugs due to the excessively narrow annular gap between the drill pipe and the wellbore. A flow diverter was developed to deal with the severe mixture of slurry and drilling fluid caused by the downward slurry spraying due to the lower open end of the drill pipe. Then, sponge balls were prepared to tackle the shortcomings such as no isolation plug in the drill pipe, as well as high costs and complex operations of existing tools. Laboratory tests show that the high-strength cement slurry with a low density of 1.74 kg/L and a compressive strength of 22.5 MPa for 24 h could satisfy the requirements of operations. The viscous reactive pills, with a density of 1.44 kg/L, a yield stress of 48 Pa, and a gel strength of 49 Pa, could effectively support the upper cement slurry. All of the above-mentioned tools can solve quality problems in the cement plug placement. The field application in Eastern Ecuador shows that the developed cementing technologies perform well and can greatly raise the success rate of operations, and thus, it can be widely popularized and applied.

  • 图  1   低密度高强水泥浆稠化曲线

    Figure  1.   Thickening curve of high-strength and low-density cement slurry

    图  2   低密度高强水泥浆强度曲线

    Figure  2.   Strength curve of high-strength and low-densitycement slurry

    图  3   不同硅酸钠加量下水泥塞的底部状态

    Figure  3.   Bottom states of a cement plug under different sodium silicate dosages

    图  4   标准分流器示意

    Figure  4.   Typical specifications of a standard flow diverter

    图  5   海绵球塞及其在管内压缩后的形态

    Figure  5.   Sponge ball and its status upon compression in the pipe

    图  6   平衡法打悬空水泥塞管柱结构

    Figure  6.   Pipe string structure for a balanced off-bottom cement plug

    表  1   不同硬度海绵球塞的物理性能

    Table  1   Physical performance of sponge balls with different hardness

    海绵球塞类型表观密度/(kg·L1承压/kPa耐温/℃压缩率
    低硬度型0.16~0.183.45~10.00−40~1501.0~2.5
    中硬度型0.21~0.2310.07~14.00−40~1501.0~2.3
    高硬度型0.33~0.3734.00~62.95−40~1501.0~1.8
    下载: 导出CSV
  • [1]

    WEBBER C, TURNER J. A new fluid-based isolation spacer increases success when spotting off-bottom cement plugs[R]. SPE 195879, 2019.

    [2] 杨玉豪,王成龙,韩成,等. 海上高温高压天然气水平井临时隔离储层悬空水泥塞技术[J]. 钻井液与完井液,2020,37(3):345–350. doi: 10.3969/j.issn.1001-5620.2020.03.013

    YANG Yuhao, WANG Chenglong, HAN Cheng, et al. Running suspended cement plug to temporarily isolate reservoir in an offshore HTHP horizontal gas well[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 345–350. doi: 10.3969/j.issn.1001-5620.2020.03.013

    [3] 谭森,王成. “悬空水泥塞” 技术在塔河油田的一次成功应用[J]. 石化技术,2021,28(2):32–33. doi: 10.3969/j.issn.1006-0235.2021.02.015

    TAN Sen, WANG Cheng. A successful exploration of “suspended cement plug” technology in Tahe Oilfield[J]. Petrochemical Indu-stry Technology, 2021, 28(2): 32–33. doi: 10.3969/j.issn.1006-0235.2021.02.015

    [4]

    FOSSO S W, TINA M, FRIGAARD I A, et al. Viscous-pill design methodology leads to increased cement plug success rates; application and case studies from southern Algeria[R]. SPE 62752, 2000.

    [5] 覃毅,张越,李利军,等. 盐穴储气库茅23井 “凸” 形井眼井底注水泥塞技术[J]. 石油钻采工艺,2020,42(4):463–466.

    QIN Yi, ZHANG Yue, LI Lijun, et al. Bottom-hole cementing plug technology for convex well in Mao 23 Well of salt cavern gas storage[J]. Oil Drilling & Production Technology, 2020, 42(4): 463–466.

    [6] 王德坤. 川西地区超深井注水泥塞技术实践[J]. 钻采工艺,2021,44(5):127–130. doi: 10.3969/J.ISSN.1006-768X.2021.05.28

    WANG Dekun. Practice of cementing plug technology in ultra-deep wells in Western Sichuan[J]. Drilling & Production Technology, 2021, 44(5): 127–130. doi: 10.3969/J.ISSN.1006-768X.2021.05.28

    [7]

    DIAZ L O, FLORES J C, JUSTUS F, et al. Innovative computer model increases success rate when placing deep kickoff plugs in southern Mexico[R]. SPE 119415, 2009.

    [8]

    ALGHAMDI M, ALWARTHAN A, BOUARAKI M, et al. Utilization of pump and pull cementing technique in highly deviated and horizontal wells[R]. IPTC 19938, 2020.

    [9]

    CARPENTER C. Stinger or tailpipe placement of cement plugs[J]. Journal of Petroleum Technology, 2014, 66(5): 147–149. doi: 10.2118/0514-0147-JPT

    [10] 郑双进,胡晓强,陈英明,等. 注水泥U型管效应分析与施工参数优化设计[J]. 石油天然气学报,2014,36(7):100–102. doi: 10.3969/j.issn.1000-9752.2014.07.021

    ZHENG Shuangjin, HU Xiaoqiang, CHEN Yingming, et al. Analysis for cementing U-shaped tube effect and optimized design for its operation parameters[J]. Journal of Oil and Gas Technology, 2014, 36(7): 100–102. doi: 10.3969/j.issn.1000-9752.2014.07.021

    [11]

    CALVERT D G, HEATHMAN J F, GRIFFITH J E. Plug cementing: horizontal to vertical conditions[R]. SPE 30514, 1995.

    [12]

    CURTIS J A, DAJANI M R. Guidelines for appropriate application of non-foamed ultralightweight cement slurries[R]. SPE 119535, 2009.

    [13] 刘钰龙. 触变早凝膨胀水泥浆体系在厄瓜多尔TAMBOCOCHA区块尾管固井中的应用[J]. 钻井液与完井液,2019,36(6):754–758.

    LIU Yulong. Application of thixotropic early-setting expanding cement slurry in cementing liner string in block TAMBOCOCHA, Ecuador[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 754–758.

    [14]

    CRAWSHAW J P, FRIGAARD I. Cement plugs: stability and failure by buoyancy-driven mechanism[R]. SPE 56959, 1999.

    [15] 李万东. 厄瓜多尔Parahuacu油田固井技术[J]. 石油钻探技术,2021,49(1):74–80. doi: 10.11911/syztjs.2020109

    LI Wandong. Cementing technology applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74–80. doi: 10.11911/syztjs.2020109

    [16] 党冬红,宋元洪,吴永超,等. 裸眼事故复杂高压气井注侧钻水泥塞技术[J]. 钻井液与完井液,2019,36(1):93–96. doi: 10.3969/j.issn.1001-5620.2019.01.018

    DANG Donghong, SONG Yuanhong, WU Yongchao, et al. Pumping cement slurry and drilling set cement plug in high pressure open hole gas well[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 93–96. doi: 10.3969/j.issn.1001-5620.2019.01.018

    [17]

    EDWARDS J H, FULLER G A, PALLA V G, et al. Prediction of residual cement in drillpipe after balanced-plug job using finite difference 3D displacement simulator[R]. SPE 166799, 2013.

    [18]

    LEBLANC T. Going the distance cement wiper plug technology[R]. SPE 184712, 2017.

  • 期刊类型引用(31)

    1. 周臣. 探究干热岩开发及发电技术的应用策略. 大众标准化. 2024(03): 145-147 . 百度学术
    2. 侯正猛,吴旭宁,罗佳顺,张烈辉,李早元,曹成,吴林,陈前均. 深部地热能系统主要挑战与耦合储能的增强型创新开发模式. 煤田地质与勘探. 2024(01): 1-13 . 百度学术
    3. 戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 . 本站查看
    4. Diquan Li,Ning Li,Jing Jia,Hongguang Yu,Qinghu Fan,Lichang Wang,Ahmed Mohsen. Development status and research recommendations for thermal extraction technology in deep hot dry rock reservoirs. Deep Underground Science and Engineering. 2024(03): 317-325 . 必应学术
    5. 许家鼎,张重远,张浩,白金朋,张士安,张盛生,秦向辉,孙东生,何满潮,吴满路. 青海共和盆地干热岩地应力测量及其储层压裂改造意义分析. 地学前缘. 2024(06): 130-144 . 百度学术
    6. 陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 . 本站查看
    7. 雷玉德 ,袁有靖 ,秦光雄 ,巴瑞寿 ,赵振 ,李铜邦 . 基于测井资料的共和盆地贵德扎仓地热田热储特征分析. 地球学报. 2023(01): 145-157 . 百度学术
    8. 王欣,才博,李帅,马锋,严增民,童征,张浩宇. 中国石油油气藏储层改造技术历程与展望. 石油钻采工艺. 2023(01): 67-75 . 百度学术
    9. 刘汉青,胡才博,赵桂萍,石耀霖. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程——以青海共和盆地恰卜恰地区干热岩开发为例. 地球物理学报. 2023(07): 2887-2902 . 百度学术
    10. 荀杨,苏博,翟梁皓,刘华南,戚波,吴景华. 干热岩储层改造技术研究进展. 长春工程学院学报(自然科学版). 2023(03): 81-86 . 百度学术
    11. 解经宇,王丹,李宁,王振宇,付国强,金显鹏,明圆圆. 干热岩压裂建造人工热储发展现状及建议. 地质科技通报. 2022(03): 321-329 . 百度学术
    12. 谢紫霄,黄中伟,熊建华,武晓光,李根生,邹文超,龙腾达. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律. 天然气工业. 2022(04): 63-72 . 百度学术
    13. 杨典森,周云,周再乐. 含界面储层水力压裂试验与数值模拟研究进展. 岩石力学与工程学报. 2022(09): 1771-1794 . 百度学术
    14. 刘肖,谭现锋,张丰,张茜,卜宪标,郑慧铭. 河北博野某地热系统现场阻垢试验及阻垢效果评价. 河北工程大学学报(自然科学版). 2022(03): 83-92 . 百度学术
    15. 张召峰. 肯尼亚高温地热钻井技术在中国干热岩资源开发中的应用前景. 油气藏评价与开发. 2022(06): 833-842 . 百度学术
    16. 王伟,陈劭颖,杨清纯,刘和平,张立松. 分段压裂诱导地热储层应力场响应的单连通解析模型分析. 油气藏评价与开发. 2022(06): 894-901 . 百度学术
    17. 刘均一,陈二丁,李光泉,袁丽. 基于相变蓄热原理的深井钻井液降温实验研究. 石油钻探技术. 2021(01): 53-58 . 本站查看
    18. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    19. 徐胜强,张旭东,张保平,周健. 测斜仪监测技术在共和盆地干热岩井压裂中的应用研究. 钻探工程. 2021(02): 42-48 . 百度学术
    20. 万晓帆,张昊. 基于CNKI和CiteSpace的国内地热研究知识图谱分析. 科技和产业. 2021(03): 225-232 . 百度学术
    21. 彭海旺,余莉. 花岗岩多次高温水冷热冲击后力学试验. 科学技术与工程. 2021(13): 5432-5439 . 百度学术
    22. 田兰兰. 增强型地热系统(EGS)的应用与发展. 中国井矿盐. 2021(04): 24-26 . 百度学术
    23. 廖石宝,周玉辉,李伯英. CO_2抽取地热联合驱油封存一体化技术进展. 现代化工. 2021(09): 70-74 . 百度学术
    24. 贺丽,慕江波. 油田压裂技术和压裂液的优化选择探讨. 化工管理. 2021(27): 87-88 . 百度学术
    25. 杜广盛,陈世江,马万里. 基于空间相关性不同组构干热岩裂隙发育. 科学技术与工程. 2021(33): 14112-14119 . 百度学术
    26. 刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系. 钻井液与完井液. 2021(04): 412-422 . 百度学术
    27. CHEN Zuo,XU Guoqing,ZHOU Jian,LIU Jiankun. Fracture Network Volume Fracturing Technology in High-temperature Hard Formation of Hot Dry Rock. Acta Geologica Sinica(English Edition). 2021(06): 1828-1834 . 必应学术
    28. 谢文苹,路睿,张盛生,朱进守,于漂罗,张珊珊. 青海共和盆地干热岩勘查进展及开发技术探讨. 石油钻探技术. 2020(03): 77-84 . 本站查看
    29. 梁海军,郭啸峰,高涛,卜宪标,李华山,王令宝. 河北博野某地热井结垢位置预测及影响因素分析. 石油钻探技术. 2020(05): 105-110 . 本站查看
    30. 陈作,张保平,周健,刘红磊,周林波,吴春方. 干热岩热储体积改造技术研究与试验. 石油钻探技术. 2020(06): 82-87 . 本站查看
    31. 罗天雨,秦大伟. 考虑温差应力的干热岩压裂裂缝开启压力. 煤炭学报. 2020(S2): 717-726 . 百度学术

    其他类型引用(16)

图(6)  /  表(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  169
  • PDF下载量:  59
  • 被引次数: 47
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2022-04-03
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回