Processing math: 1%

庆城油田页岩油水平井压增渗一体化体积压裂技术

张矿生, 唐梅荣, 陶亮, 杜现飞

张矿生, 唐梅荣, 陶亮, 杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003
引用本文: 张矿生, 唐梅荣, 陶亮, 杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003
ZHANG Kuangsheng, TANG Meirong, TAO Liang, DU Xianfei. Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003
Citation: ZHANG Kuangsheng, TANG Meirong, TAO Liang, DU Xianfei. Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9-15. DOI: 10.11911/syztjs.2022003

庆城油田页岩油水平井压增渗一体化体积压裂技术

基金项目: 国家科技重大专项“鄂尔多斯盆地致密油开发示范工程”(编号:2017ZX05069)资助
详细信息
    作者简介:

    张矿生(1976—),男,陕西西安人,1998年毕业于西南石油学院石油工程专业,2004年获西南石油学院油气田开发工程专业硕士学位,高级工程师,主要从事低渗透、非常规油气储层改造方面的研究与管理工作。E-mail:zks_cq@ petrochina.com

  • 中图分类号: TE357.1+3

Horizontal Well Volumetric Fracturing Technology Integrating Fracturing, Energy Enhancement, and Imbibition for Shale Oil in Qingcheng Oilfield

  • 摘要: 庆城油田页岩油储层低压、低脆性指数特征明显,是阻碍体积压裂后建立高效驱替渗流系统的重要因素,为此,研究了压裂、增能和渗吸(压增渗)一体化体积压裂技术。建立了页岩油储层类型精细划分方法;基于长期产液剖面测试所得矿场大数据,优化了不同储层类型改造策略;利用油藏数值模拟方法,优化了压增渗体积压裂技术关键参数。研究表明:Ⅰ+Ⅱ类储层改造段数占比 83.6%,产出占比 95.5%,为主要产能贡献段;Ⅲ类储层产出占比仅4.5%,对产能贡献有限,因此,应优先改造Ⅰ+Ⅱ类储层,选择性改造Ⅲ类储层;Ⅰ类和Ⅱ类储层进液强度最优区间分别为20~25 m3/m和 15~20 m3/m,增能方式为同步增能。庆城油田200余口页岩油水平井应用了压增渗一体化体积压裂技术,单井初期产油量由9.6 t/d提高至18.0 t/d,单井1年累计产油量由2 380 t提高至5256 t,单井估计最终可采量由1.8×104 t提高至2.6×104 t,取得了显著效果。该技术为其他同类非常规页岩油藏高效开发提供了技术借鉴。
    Abstract: Shale oil reservoirs in Qingcheng Oilfield have distinct characteristics of low pressure and low brittleness index, which significantly hinder the establishment of an efficient displacement seepage system after volumetric fracturing. In light of this, a volumetric fracturing technology was developed integrating fracturing, energy enhancement, and imbibition. A new method for refined and detailed classification of shale oil reservoirs was formulated. Then, stimulation strategies for different reservoir types were optimized with field big data obtained from tests on long-term fluid production profiles. Finally, the key parameters of the volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition were optimized through the numerical simulation of oil reservoirs. The research results showed that type Ⅰ and type Ⅱ reservoirs, making up 83.6% of the stimulated sections and 95.5% of the total production, were the main contributions to productivity. In contrast, the productivity contribution of type Ⅲ reservoirs accounted for only 4.5% of the total production. Therefore, stimulation treatment priority should be given to type Ⅰ and type Ⅱ reservoirs while only some selective sections of type Ⅲ reservoirs should be stimulated. The optimal intervals of fluid injection intensity for type I and type II reservoirs are 20–25 m3/m and 15–20 m3/m respectively, with synchronous energy enhancement. The volumetric fracturing technology was applied to more than 200 horizontal shale oil wells in Qingcheng Oilfield. The initial single-well production was increased from 9.6 t/d to 18.0 t/d, the single-well annual cumulative oil production was enhanced from 2 380 t to 5256 t, and the single-well estimated ultimate recovery (EUR) was improved from 1.8×104 t to 2.6×104 t. This technology has provided a technical reference for the efficient development of similar unconventional shale oil reservoirs.
  • 致密砂岩、页岩等地下岩石的发育具有广泛的各向异性特征[14]。沉积过程中,地层电性通常沿水平方向保持不变,而在纵向上存在非均质性,该类地层称为横向各向同性介质(VTI)[510]。若各向同性地层中存在相互平行的垂直裂缝,则会引起横向电导率的各向异性,该类地层常等效为水平向横向各向同性介质(HTI)[11]。页岩及致密岩性复杂地层既存在由于沉积或成岩作用引起的层理各向异性,又存在裂缝发育引起的诱导各向异性[12],不同方向上的电导率均不相同,表现为更复杂的三轴各向异性[13]。电测井是评价地层各向异性的重要手段,其本质是测量偶极子源激发的磁场[1415]。传统感应测井仅能探测地层水平电阻率;多分量感应测井通过测量磁场张量,可在任意井斜获取地层的各向异性。随钻方位电磁波测井则借助于磁场交叉分量的方位敏感性,实现了对未钻遇地层实时“环视”和“前视”[1617]。然而,目前电测井仪研究主要针对VTI介质,对HTI及三轴各向异性介质响应规律的研究极少。

    准确求解层状介质中偶极子源电磁场,不仅能够指导仪器设计、储层定性解释,也是反演的基础。早期,研究人员主要针对VTI介质提出并发展了多种求解方法[1820]。相比于VTI介质,三轴各向异性介质电磁场的横电波与横磁波相互耦合,电磁波表达形式更复杂,需求解双重无穷域振荡积分,积分难度大。L. Løseth等人[21] 给出了三轴各向异性地层广义反射矩阵递推公式。Hu Yunyun等人[22]提出了基于高斯离散点和一次场扣除技术的双重积分方法。总体而言,现有的三轴各向异性地层磁偶极子源电磁场求解方法较为单一,双重积分方法所需节点数仍较多,积分效率仍有待进一步提升。

    笔者首先推导了磁偶极子源在一维地层的谱域电磁场的通解形式,通过将地层上/下界面引入至下/上行波的指数项,避免了数值溢出问题;然后将系数传播矩阵推广至三轴各向异性地层,获得了各层内的幅度系数递推表达式,并提出了双重无限域振荡核函数的快速积分方法,实现了任意位置空间域电磁场的准确计算;最后,将新的伪解析算法应用于电磁波测井,分析了不同各向异性地层模型对感应和随钻方位电磁波测井响应的影响。

    假定空间中仅存在低频磁偶极子,且其按eiωt形式随时间变化,相应的麦克斯韦方程为:

    \left\{\begin{array}{l} \nabla \times {\boldsymbol{E}} = {\rm{i}}\omega \mu \left( {{\boldsymbol{M}} + {\boldsymbol{H}}} \right)\\ \nabla \times {\boldsymbol{H}} = {\boldsymbol{\sigma E}} \end{array}\right. (1)

    式中:H为磁场强度,A/m;E为电场强度,V/m;μ为介质的磁导率,H/m;ω为介质的角频率,rad/s;M为磁矩,A·m2σ为三轴各向异性介质的电导率,S/m。

    水平层状介质仅在z方向存在电性非均质性。对式(1)作关于xy的傅里叶变换,并消除谱域场纵向分量,分别得到满足谱域电场 {\tilde E_x} 和谱域磁场 {\tilde H_x} 的微分方程:

    \left\{ {\begin{array}{*{20}{c}} {\dfrac{{{\partial ^4}{{\tilde E}_x}}}{{\partial {z^4}}} - {a_{\rm{a}}}\dfrac{{{\partial ^2}{{\tilde E}_x}}}{{\partial {z^2}}} + {a_b}{{\tilde E}_x} = \dfrac{{{\partial ^2}{e_c}}}{{\partial {z^2}}} + {e_b}\dfrac{{\partial {b_c}}}{{\partial z}} - {e_c}{b_a}} \\ {\dfrac{{{\partial ^4}{{\tilde H}_x}}}{{\partial {z^4}}} - {a_a}\dfrac{{{\partial ^2}{{\tilde H}_x}}}{{\partial {z^2}}} + {a_b}{{\tilde H}_x} = \dfrac{{{\partial ^2}{b_c}}}{{\partial {z^2}}} + {b_b}\dfrac{{\partial {e_c}}}{{\partial z}} - {e_a}{b_c}} \end{array}} \right. (2)
    \, 其中\;\;{a_{\rm{a}}} = - \frac{{k_z^2\left( {k_x^2 + k_y^2} \right) - {\xi ^2}\left( {k_x^2 + k_z^2} \right) - {\eta ^2}\left( {k_y^2 + k_z^2} \right)}}{{k_z^2}} (3)
    {a_{\rm{b}}} = \dfrac{{\left( {{\xi ^2} + {\eta ^2} - k_z^2} \right)\left( {{\xi ^2}k_x^2 + {\eta ^2}k_y^2 - k_x^2k_y^2} \right)}}{{k_z^2}} (4)
    {e_{\rm{a}}}{\text{ = }}\dfrac{{\left( {{\xi ^2}k_x^2 + {\eta ^2}k_y^2 - k_x^2k_y^2} \right)\left( {k_z^2 - {\xi ^2}} \right)}}{{k_z^2\left( {k_y^2 - {\xi ^2}} \right)}} (5)
    {e_{\rm{b}}}{\text{ = }}\dfrac{{{\rm{i}}\omega \mu \xi \eta \left( {k_y^2 - k_z^2} \right)}}{{k_z^2\left( {k_y^2 - {\xi ^2}} \right)}} (6)
    {{e_{\rm{c}}} = {\rm{i}}\omega \mu {M_y}\delta \left( z \right) + \dfrac{{\omega \mu \eta k_y^2\left( {k_z^2 - {\xi ^2}} \right)}}{{k_z^2\left( {k_y^2 - {\xi ^2}} \right)}}{M_z}\delta \left( z \right)} (7)
    {b_{\rm{a}}}{\text{ = }}\dfrac{{\left( {k_y^2 - {\xi ^2}} \right)\left( {{\xi ^2} + {\eta ^2} - k_z^2} \right)}}{{k_z^2 - {\xi ^2}}} (8)
    {b_{\rm{b}}}{\text{ = }}\dfrac{{\xi \eta \left( {k_z^2 - k_y^2} \right)}}{{{\rm{i}}\omega \mu \left( {k_z^2 - {\xi ^2}} \right)}} (9)
    {{b_{\rm{c}}} = \left( {{\xi ^2} - k_y^2} \right){M_x}\delta \left( z \right) + \dfrac{{\xi \eta \left( {k_y^2 - {\xi ^2}} \right)}}{{k_z^2 - {\xi ^2}}}{M_y}\delta \left( z \right) - {\rm{i}}\xi {M_z}\delta \left( z \right)} (10)
    k_j^2 = {\rm{i}}\omega \mu {\sigma _j} (11)

    式中:ξηxy方向的波数,cm−1δ(z)为狄拉克函数。

    式(2)的解由非齐次方程的特解和齐次方程的通解叠加而成,前者是源在背景介质中激发的一次电磁场,后者则为地层非均质引起的散射场。为获取谱域一次场,对式(2)沿z向进行傅里叶变换和逆变换。首先,采用围线积分方法,获得谱域电磁场的表达式。以z>0为例, \tilde E_x^{\rm{b}}\left( {\boldsymbol{k}} \right) \tilde H_x^{\rm{b}}\left( {\boldsymbol{k}} \right) 写为:

    \begin{split} \tilde E_x^{\rm{b}} =& \frac{{\text{π}} }{{k_z^2}}\left[ {{{\left. {\frac{{{{\rm{e}}^{ - \alpha z}}\left( {{a_1} + {a_2} + {a_3}} \right)}}{{\alpha \left( {{\beta ^2} - {\alpha ^2}} \right)}}} \right|}_{\varsigma = {\rm{i}}\alpha }} + {{\left. {\frac{{{{\rm{e}}^{ - \beta z}}\left( {{a_1} + {a_2} + {a_3}} \right)}}{{\beta \left( {{\alpha ^2} - {\beta ^2}} \right)}}} \right|}_{\varsigma = {\rm{i}}\beta }}} \right], \\ &\qquad \qquad\qquad\qquad\quad z > 0 \end{split} (12)
    \begin{split} \tilde H_x^{\rm{b}} =& \frac{{\text{π}} }{{k_z^2}}\left( {{{\left. {\frac{{{{\rm{e}}^{ - \alpha z}}\left( {{b_1} + {b_2} + {b_3}} \right)}}{{\alpha \left( {{\beta ^2} - {\alpha ^2}} \right)}}} \right|}_{\varsigma = {\rm{i}}\alpha }} + {{\left. {\frac{{{{\rm{e}}^{ - \beta z}}\left( {{b_1} + {b_2} + {b_3}} \right)}}{{\beta \left( {{\alpha ^2} - {\beta ^2}} \right)}}} \right|}_{\varsigma = {\rm{i}}\beta }}} \right),\\ &\qquad\qquad\qquad\qquad\quad z > 0 \end{split} (13)

    式中:αβ分别为I型波和II型波的波数,cm−1

    \alpha ,\beta = \sqrt {{{\left( {{a_{{a}}} \mp \sqrt {a_{{a}}^2 - 4{a_{{b}}}} } \right)} \mathord{\left/ {\vphantom {{\left( {{a_{{a}}} \mp \sqrt {a_{{a}}^2 - 4{a_{{b}}}} } \right)} 2}} \right. } 2}} (14)

    式(12)和式(13)中的a1a2a3b1b2b3为中间变量,表达式如下:

    \left( {\begin{array}{*{20}{c}} {{a_1}} \\ {{a_2}} \\ {{a_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{l}} {\omega \mu \xi \eta \varsigma \left( {k_y^2 - k_z^2} \right){M_x}} \\ {\omega \mu \varsigma \left( {k_z^2\left( {{\xi ^2} + {\varsigma ^2} - k_y^2} \right) + k_y^2{\eta ^2}} \right){M_y}} \\ {\omega \mu \eta \left( {k_y^2k_z^2 - {\varsigma ^2}k_z^2 - k_y^2\left( {{\xi ^2} + {\eta ^2}} \right)} \right){M_z}} \end{array}} \right) (15)
    \left( {\begin{array}{*{20}{c}} {{b_1}} \\ {{b_2}} \\ {{b_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{l}} {\left( {{\varsigma ^2}k_z^2\left( {k_y^2 - {\xi ^2}} \right) + \left( {{\xi ^2}k_x^2 + {\eta ^2}k_y^2 - k_x^2k_y^2} \right)\left( {k_z^2 - {\xi ^2}} \right)} \right){M_x}} \\ {\xi \eta \left( { - {\varsigma ^2}k_z^2 - \left( {{\xi ^2}k_x^2 + {\eta ^2}k_y^2 - k_x^2k_y^2} \right)} \right){M_y}} \\ {\xi \varsigma \left( { - {\varsigma ^2}k_z^2 + k_x^2k_z^2 - {\eta ^2}k_y^2 - {\xi ^2}k_x^2} \right){M_z}} \end{array}} \right) (16)

    然后,求取谱域散射场的一般表达式,其通解满足指数形式 {{\rm{e}}^{\lambda z}} ,则式(12)变为:

    {\lambda ^4} - {a_{\rm{a}}}{\lambda ^2} + {a_{\rm{b}}} = 0 (17)

    式(17)存在4个互不相同的解α,–αβ和–β。将地层界面位置引入指数项,第j层散射场通解的表达式为:

    \begin{split} \left( {\begin{array}{*{20}{c}} {\tilde E_{xj}^{\rm{s}}} \\ {\tilde H_{xj}^{\rm{s}}} \end{array}} \right) = &\left( {\begin{array}{*{20}{c}} {{C_j}} \\ {{U_j}} \end{array}} \right){{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} + \left( {\begin{array}{*{20}{c}} {{D_j}} \\ {{V_j}} \end{array}} \right){{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} +\\ &\left( {\begin{array}{*{20}{c}} {{G_j}} \\ {{W_j}} \end{array}} \right){{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}} + \left( {\begin{array}{*{20}{c}} {{H_j}} \\ {{X_j}} \end{array}} \right){{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}}\\[-14pt] \end{split} (18)

    式中:zj–1zj分别为第j层地层下界面和上界面的位置,m;CjDjGjHj为界面处的电场幅度,V/m;UjVjWjXj为界面处的磁场幅度,A/m。

    式(3)—式(10)中的指数项能保证波总是在衰减的,避免了数值溢出现象。

    将一次场和二次场合并,得到磁偶极子源在三轴各向异性介质的通解:

    \left\{ {\begin{array}{*{20}{l}} \begin{split} {{\tilde E}_{xj}} =& {C_j}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} + {D_j}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} + \\ &{G_j}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}} +{H_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}} + \gamma \tilde E_x^{\rm{b}} \end{split} \\ \begin{split} {{\tilde H}_{xj}} =& {U_j}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} + {V_j}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} + \\ &{W_j}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}} + {X_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}} + \gamma \tilde H_x^{\rm{b}} \end{split} \end{array}} \right. (19)

    其中,\gamma =\left\{\begin{array}{c}0\;\; 源不在第j层\\ 1\;\; 源在第j层时\end{array} \right.。进一步,可得y方向的谱域分量:

    \begin{split} {\tilde E_y} = &a_{1_j}\left( {C_j}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} + {D_j}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} + {G_j}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}} +\right.\\ &\left.{H_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}} + \gamma \tilde E_x^{\rm{b}} \right) + \left( - a_{2_j}{U_j}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} - \right.\\ &\left. a_{3_j}{V_j}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} +a_{2_j}{W_j}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}}+\right. \\ & \left. a_{3_j}{X_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}} + \gamma a_{4_j} \right)\\[-12pt] \end{split} (20)
    \begin{split} {\tilde H_y} =& \left( b_{2_j}{C_j}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} + b_{3_j}{D_j}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} -\right. \\ & \left.b_{2_j}{G_j}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}} - b_{3_j}{H_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}} + b_{4_j}\gamma \right) +\\ &b_{1_j}\left( {U_j}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}} + {V_j}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}} +\right. \\ & \left.{W_j}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}} + {X_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}} + \gamma \tilde H_x^{\rm{b}} \right) \end{split} (21)
    \,其中\qquad\qquad\qquad\quad a_{1_j} = - \dfrac{{\xi \eta }}{{k_y^2 - {\xi ^2}}} \quad (22)
    a_{2_j} = \dfrac{{{\rm{i}}\omega \mu {\alpha _j}}}{{k_y^2 - {\xi ^2}}} (23)
    a_{3_j} = \dfrac{{{\rm{i}}\omega \mu {\beta _j}}}{{k_y^2 - {\xi ^2}}} (24)
    a_{4_j} = \dfrac{{{\rm{i}}\omega \mu }}{{k_y^2 - {\xi ^2}}} (25)
    b_{1_j} = - \dfrac{{\xi \eta }}{{k_z^2 - {\xi ^2}}} (26)
    b_{2_j} = - \dfrac{{k_z^2{\alpha _j}}}{{{\rm{i}}\omega \mu \left( {k_z^2 - {\xi ^2}} \right)}} (27)
    b_{3_j} = - \dfrac{{k_z^2{\beta _j}}}{{{\rm{i}}\omega \mu \left( {k_z^2 - {\xi ^2}} \right)}} (28)
    b_{4_j} = \dfrac{{k_z^2}}{{\rm{i}}\omega \mu \left( {k_z^2 - {\xi ^2}}\right)} (29)

    式 (19)—式(21)中存在8个未知幅度,其中仅有4个系数独立,具体推导公式见附录A。第j层中,谱域水平电磁场分量可表达为:

    {\left[ {{{\tilde E}_{xj}},{{\tilde H}_{xj}},{{\tilde E}_{yj}},{{\tilde H}_{yj}}} \right]^{\rm{T}}} = {{\boldsymbol{P}}_j}\left( z \right){{\boldsymbol{\varLambda }}_j} + \gamma {\boldsymbol{S}}\left( z \right) (30)
    \, 其中\qquad {\boldsymbol{S}}\left( z \right) = {\left[ {{k_s}\left( z \right),{l_{\rm{s}}}\left( z \right),{m_{\rm{s}}}\left( z \right),{n_{\rm{s}}}\left( z \right)} \right]^{\rm{T}}} (31)
    {{\boldsymbol{\varLambda }}_j} = {\left[ {{C_j},{G_j},{V_j},{X_j}} \right]^{\rm{T}}} (32)

    式中:{{\boldsymbol{\varLambda }}_j}为每层待求幅度系数构成的矢量。

    j层的幅度传播矩阵{{\boldsymbol{P}}_j}\left( z \right)为:

    {{\boldsymbol{P}}_j}\left( z \right) = \left( {\begin{array}{*{20}{c}} {{k_{{\rm{a}},j}}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}}}&{{k_{{\rm{b}},j}}{G_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}}}&{{k_{{\rm{c}},j}}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}}}&{{k_{{\rm{d}},j}}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}}} \\ {{l_{{\rm{a}},j}}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}}}&{{l_{{\rm{b}},j}}{G_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}}}&{{l_{{\rm{c}},j}}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}}}&{{l_{{\rm{d}},j}}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}}} \\ {{m_{{\rm{a}},j}}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}}}&{{m_{{\rm{b}},j}}{G_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}}}&{{m_{{\rm{c}},j}}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}}}&{{m_{{\rm{d}},j}}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}}} \\ {{n_{{\rm{a}},j}}{{\rm{e}}^{ - {\beta _j}\left( {z - {z_{j - 1}}} \right)}}}&{{n_{{\rm{b}},j}}{G_j}{{\rm{e}}^{{\beta _j}\left( {z - {z_j}} \right)}}}&{{n_{{\rm{c}},j}}{{\rm{e}}^{ - {\alpha _j}\left( {z - {z_{j - 1}}} \right)}}}&{{n_{{\rm{d}},j}}{{\rm{e}}^{{\alpha _j}\left( {z - {z_j}} \right)}}} \end{array}} \right) (33)

    式中:klmn取决于地层的电性参数和角频率,其具体表达见式(A-29)—式(A-48)。

    假定三轴各向异性地层有N层,源位于第m层,如图1所示。根据边界条件,界面两侧电磁场的切向分量连续,z=zj处有:

    图  1  多层三轴各向异性地层模型示意
    Figure  1.  Layered formation model with triaxial anisotropy
    {\left[ {{{\tilde E}_{xj}},{{\tilde H}_{xj}},{{\tilde E}_{yj}},{{\tilde H}_{yj}}} \right]^{\rm{T}}} = {\left[ {{{\tilde E}_{x\left( {j + 1} \right)}},{{\tilde H}_{x\left( {j + 1} \right)}},{{\tilde E}_{y\left( {j + 1} \right)}},{{\tilde H}_{y\left( {j + 1} \right)}}} \right]^{\rm{T}}} (34)

    若第j和第j+1层均为无源层,2层之间的幅度系数递推关系如下:

    {{\boldsymbol{P}}_j}\left( {{z_j}} \right){{\boldsymbol{\varLambda }}_j} = {{\boldsymbol{P}}_{j + 1}}\left( {{z_j}} \right){{\boldsymbol{\varLambda }}_{j + 1}} (35)

    式中: {{\boldsymbol{P}}_j}\left( {{z_j}} \right) {{\boldsymbol{P}}_{j + 1}}\left( {{z_j}} \right) j层上、下界面处的幅度传播矩阵。

    同理,在第m层上界面和下界面处,式(33)变为:

    {{\boldsymbol{P}}_{p - 1}}\left( {{z_{p - 1}}} \right){{\boldsymbol{\varLambda }}_{p - 1}} = {{\boldsymbol{P}}_p}\left( {{z_{p - 1}}} \right){{\boldsymbol{\varLambda }}_p} + {\boldsymbol{S}}\left( {{z_{p - 1}}} \right) (36)
    {{\boldsymbol{P}}_p}\left( {{z_p}} \right){{\boldsymbol{\varLambda }}_p} + {\boldsymbol{S}}\left( {{z_p}} \right) = {{\boldsymbol{P}}_{p + 1}}\left( {{z_p}} \right){{\boldsymbol{\varLambda }}_{p + 1}} (37)

    利用有源区和无源区的边界条件,经逐层递推可以得到第一层和最后一层幅度系数的矢量关系式:

    {{\boldsymbol{P}}_1}\left( {{z_1}} \right){{\boldsymbol{\varLambda }}_1} = {\boldsymbol{A}}{{\boldsymbol{P}}_N}\left( {{z_{N - 1}}} \right){{\boldsymbol{\varLambda }}_N} - {\boldsymbol{BS}}\left( {{z_p}} \right) + {\boldsymbol{CS}}\left( {{z_{p + 1}}} \right) (38)

    式中:ABC为4阶方阵。

    {\boldsymbol{A}} = {{\boldsymbol{P}}_2}\left( {{z_1}} \right){\left( {{{\boldsymbol{P}}_2}\left( {{z_2}} \right)} \right)^{ - 1}} \cdots {{\boldsymbol{P}}_{N - 1}}\left( {{z_{N - 2}}} \right){\left( {{{\boldsymbol{P}}_{N - 1}}\left( {{z_{N - 1}}} \right)} \right)^{ - 1}} (39)
    {\boldsymbol{B}} = {{\boldsymbol{P}}_2}\left( {{z_1}} \right){\left( {{{\boldsymbol{P}}_2}\left( {{z_2}} \right)} \right)^{ - 1}} \cdots {{\boldsymbol{P}}_p}\left( {{z_{p - 1}}} \right){\left( {{{\boldsymbol{P}}_p}\left( {{z_p}} \right)} \right)^{ - 1}} (40)
    {\boldsymbol{C}} = {{\boldsymbol{P}}_2}\left( {{z_1}} \right){\left( {{{\boldsymbol{P}}_2}\left( {{z_2}} \right)} \right)^{ - 1}} \cdots {{\boldsymbol{P}}_{p - 1}}\left( {{z_{p - 2}}} \right){\left( {{{\boldsymbol{P}}_{p - 1}}\left( {{z_{p - 1}}} \right)} \right)^{ - 1}} (41)

    由于最外层是半无限厚介质,{{\boldsymbol{\varLambda }}_1}{{\boldsymbol{\varLambda }}_N}中各有2个值非零。求解式(37),得到最外层的幅度系数,结合式(35)—式(37),即可逐层递推各层的幅度系数谱域电磁场的切向和垂向分量。最后,沿ξη方向进行双重傅里叶逆变换,得到空间域电磁场响应:

    \begin{split} &\qquad\quad \left[ {{\boldsymbol{E}}\left( {x,y,z} \right),{\boldsymbol{H}}\left( {x,y,z} \right)} \right] = \frac{1}{{{{\left( {2{\text{π}} } \right)}^2}}}\cdot \\ & \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\left[ {{{\tilde {\boldsymbol{E}}}}\left( {\xi ,\eta ,z} \right),{\boldsymbol{\tilde H}}\left( {\xi ,\eta ,z} \right)} \right]} {{\rm{e}}^{{\rm{i}}\xi x + {\rm{i}}\eta y}}{\rm{d}}\xi {\rm{d}}\eta } \end{split} (42)

    三轴各向异性介质中,电磁场求解的另一难点在于快速、精确地实现双重傅里叶逆变换。为此,给出了2种双重无穷域振荡函数的高效积分方法。

    低角度井中,积分核函数快速收敛,故采用高斯–勒让德积分方法。首先,将两重无限积分转化为半无穷积分与定积分的组合。以电场为例,令\xi = {k_\rho }\cos\phi ,\eta = {k_\rho }\sin\phi,式(42)变为:

    {\boldsymbol{E}}\left( {\boldsymbol{r}} \right) = \frac{1}{{{{\left( {2{\text{π}} } \right)}^2}}}\int_0^{2{\text{π}} } {\int_0^\infty {\widetilde {\boldsymbol{E}}\left( {{k_\rho },\phi ,z} \right)} {{\rm{e}}^{{\rm{i}}{k_\rho }\left( {x\cos\phi + y\sin\phi } \right)}}{k_\rho }{\rm{d}}\phi {\rm{d}}} {k_\rho } (43)

    假定定积分[0,2π]内设置P个高斯积分点,式(43)写为:

    {\boldsymbol{E}}\left( {\boldsymbol{r}} \right) \approx \frac{1}{{4{{\text{π}} ^2}}}\sum\limits_{k = 1}^P {{A_k}\int_0^\infty {\widetilde {\boldsymbol{E}}\left( {{k_\rho },{\phi _k},z} \right)} {{\rm{e}}^{{\rm{i}}{k_\rho }\left( {x\cos{\phi _k} + y\sin{\phi _k}} \right)}}{k_\rho }{\rm{d}}{k_\rho }} (44)

    式中:Akϕk分别为求积系数和高斯节点。

    然后,选择合适的积分上限,实现空间域电磁场的精确计算,式(44)变为:

    {\boldsymbol{E}}\left( {\boldsymbol{r}} \right) \approx \frac{1}{{4{{\text{π}} ^2}}}\sum\limits_{k = 1}^P {\sum\limits_{l = 1}^P {\left( {{A_k}{B_l}\widetilde {\boldsymbol{E}}\left( {{k_{l,}},{\phi _k},z} \right){{\rm{e}}^{{\rm{i}}{k_l}\left( {x\cos{\phi _k} + y\sin{\phi _k}} \right)}}{k_l}} \right)} } (45)

    式中:Blklkρ方向的求积系数和高斯节点。

    大斜度井中,积分核函数振荡性强、衰减慢,不适合用直接积分方法。为此,采用正余弦滤波系数方法。以第二重积分为例,令\widetilde {\boldsymbol{e}}\left( {\xi ,z} \right) = \displaystyle \int_{ - \infty }^\infty {\widetilde {\boldsymbol{E}}\left( {\xi ,\eta ,z} \right)} {{\rm{e}}^{{\rm{i}}\eta y}}\cdot {\rm{d}}\eta,有:

    \begin{split} \widetilde {\boldsymbol{e}}\left( {\xi ,z} \right) =& \int_0^\infty \left[ \left( {\widetilde {\boldsymbol{E}}\left( {\xi ,\eta ,z} \right) + \widetilde {\boldsymbol{E}}\left( {\xi , - \eta ,z} \right)} \right)\cos\left( {\eta y} \right) +\right.\\ & \left.{\rm{i}}\left( {\widetilde {\boldsymbol{E}}\left( {\xi ,\eta ,z} \right) - \widetilde {\boldsymbol{E}}\left( {\xi , - \eta ,z} \right)} \right)\sin\left( {\eta y} \right) \right] {\rm{d}}\eta \end{split} (46)

    基于数值滤波理论,结合离散采样方法[35],式(42)变为:

    \begin{split} \widetilde {\boldsymbol{e}}\left( {\xi ,z} \right) =& \frac{1}{y}\sum\limits_{l = 1}^M \left[ \widetilde {\boldsymbol{E}}\left( {\xi ,\frac{{{\lambda _l}}}{y},z} \right)\left( {W_l^{\rm{c}} + {\rm{i}}W_l^{\rm{s}}} \right) +\right.\\ &\left.\widetilde {\boldsymbol{E}}\left( {\xi , - \frac{{{\lambda _l}}}{y},z} \right)\left( {W_l^{\rm{c}} - {\rm{i}}W_l^{\rm{s}}} \right) \right] \end{split} (47)

    式中: W_l^{\rm{c}} W_l^{\rm{s}} 分别为正弦和余弦滤波的权重;M为滤波点个数; {\lambda _l} 为采样点位置。

    利用同样的方法,对ξ方向的无穷积分进行处理,即可得到空间中电场的双重数值滤波积分表达式:

    \begin{split} {\boldsymbol{E}}\left( {\boldsymbol{r}} \right) = &\frac{1}{{{{\left( {2{\text{π}} } \right)}^2}}}\frac{1}{{xy}}\sum\limits_{p = 1}^M {\sum\limits_{l = 1}^M {\left[ \widetilde {\boldsymbol{E}}\left( {\frac{{{\lambda _p}}}{x},\frac{{{\lambda _l}}}{y},z} \right)\left( {W_l^{\rm{c}} + iW_l^{\rm{s}}} \right) + \widetilde {\boldsymbol{E}}\left( {\frac{{{\lambda _p}}}{x}, - \frac{{{\lambda _l}}}{y},z} \right)\left( {W_l^{\rm{c}} - iW_l^{\rm{s}}} \right) \right]\left( {W_p^{\rm{c}} + iW_p^{\rm{s}}} \right)} } +\\& \frac{1}{{{{\left( {2{\text{π}} } \right)}^2}}}\frac{1}{{xy}}\sum\limits_{p = 1}^M {\sum\limits_{l = 1}^M {\left[ {\left( \widetilde {\boldsymbol{E}}\left( { - \frac{{{\lambda _p}}}{x},\frac{{{\lambda _l}}}{y},z} \right)\left( {W_l^{\rm{c}} + iW_l^{\rm{s}}} \right) + \widetilde {\boldsymbol{E}}\left( { - \frac{{{\lambda _p}}}{x}, - \frac{{{\lambda _l}}}{y},z} \right)\left( {W_l^{\rm{c}} - iW_l^{\rm{s}}} \right) \right)} \right]} \left( {W_p^{\rm{c}} - iW_p^{\rm{s}}} \right)} \end{split} (48)

    建立无限厚各向异性地层模型,其中沿xyz方向的电阻率分别为1,1和4 Ω·m。假定源工作频率为10 kHz,接收点位为(0.5, 0.05, 0.01)(见图2(a))。以测量的磁场z向分量为例,双重高斯积分核函数在kρ-ϕ平面的展布如图2(b)所示。

    图  2  无限厚双轴各向异性地层模型及双重积分核函数分布
    Figure  2.  Infinitely thick formation model with biaxial anisotropy and double integral kernel function distribution

    图2(b)可以看出,核函数沿kρϕ轴均具有强烈的振荡性,且kρ大于75时衰减仍未结束。当采用双重滤波系数方法且滤波点数量为241时,积分核函数沿λpλl的分布如图2(c)所示。与图2(b)相比,经数值滤波处理后,可以忽略核函数振荡性,极大地降低了积分难度。进一步对比2种方法的采样点数量与积分精度,结果见表1。由表1可以看出,数值滤波方法仅需81个采样点即可保证计算精度,且计算速度在高斯积分方法的200倍以上。

    表  1  2种积分方法精度与速度的对比
    Table  1.  Accuracy and speed comparison of two integral methods
    方法采样点数量误差,%相对耗时
    高斯积分1 2000.004 0219.50
    2 0000.000 3610.00
    数值滤波810.006 01.00
    2410.002 58.85
    6010.001 655.10
    下载: 导出CSV 
    | 显示表格

    为进一步验证递推算法的准确性,建立2层三轴各向异性地层模型,第一层的电导率分别为1.00,0.50和0.25 S/m,第二层的电导率分别为0.10,0.05和0.025 S/m。采用三轴发射和接收,源距和频率分别为1 m和10 kHz。仪器轴与地层法向夹角θ分别为0°,45°和80°时,接收位置处的部分磁场强度分量如图3所示。从图3可以看出,2种方法计算结果的一致性高,表明递推算法准确、可靠,且能在任意角度下精确模拟磁偶极子源激发的电磁场。

    图  3  2层介质伪解析解与商业软件计算结果的对比
    Figure  3.  Result comparison by pseudo-analytical method and commercial software in two layered formation

    针对直井电缆测井,研究不同方向各向异性条件下多分量感应测井响应特征。图4(a)所示为典型的多分量感应测井仪器的基本结构。其中,每个发射/接收天线系由3个相互正交的磁偶极子线圈组成。考虑2种各向异性地层,即VTI各向异性和HTI各向异性,分别见图4(b)和图4(c)。VTI介质中水平方向的电导率相等为σ1,垂直方向电导率为σ2。假定HTI介质xoz平面为电导率为σ1的各向同性平面,y方向电导率为σ2

    图  4  多分量感应测井结构及地层模型
    Figure  4.  Multi-component induction logging structure and formation model

    直井中多分量感应测井仅同轴和共面分量不为零,故仅考虑测量σxx,σyyσzz。仪器工作频率为10 kHz,源距为0.635 m,对于VTI介质,多分量感应测井在俄克拉荷马模型中的响应特征如图5所示。从图5可以看出:zz分量很好地反映了地层水平方向的电导率,即σ1σxx和σyy的响应完全一致,其受地层垂向电导率的影响更大。

    图  5  VTI介质多分量感应测井的同轴和共面分量在俄克拉荷马地层模型中的响应
    Figure  5.  Coaxial and coplanar components of multi-component induction logging in a VTI Oklahom formation model

    对于HTI介质,仪器工作频率为10 kHz,源距为0.635 m,多分量感应测井响应特征如图6所示,可以看出xxyy分量不再重合,表明两者受y向各向异性的影响不同。与图5相比,同轴分量电导率变低,其受σ2的影响增大,此时若采用zz分量评价地层电导率σ1,则存在较大的误差,从而影响储层饱和度等参数计算的准确性。

    图  6  HTI介质多分量感应测井的同轴和共面分量在俄克拉荷马地层模型中的响应
    Figure  6.  Coaxial and coplanar components of multi-componentinduction logging in a HTI Oklahoma formation model

    随钻方位电磁波测井仪(ARM)具有地层界面实时方位探测和地质导向能力,其基础在于测量磁场交叉分量(Hzx),即地质信号。为对比各向异性对地质信号的影响,建立3层地层模型,其中中间层为电导率为1.0 S/m的各向同性地层,两侧围岩为电导率一致的高阻各向异性地层。考虑各向同性、VTI、HTI和三轴各向异性等4种围岩情况建立地层模型,围岩的电阻率见表2。测井仪器频率和源距分别为100 kHz、2 m时,4种模型地质信号响应如图7所示。从图7可以看出,各向同性介质中测井仪器靠近层界面时,ARM幅度单调增加。利用非零幅度特征,可定量计算仪器距地层界面的距离(DTB)。同时,仪器自高阻地层进入低阻地层和自低阻进入高阻地层时,ARM测量信号符号相反。基于此特性,可以准确判断地层界面的上、下方位信息。

    表  2  不同地层模型围岩的电导率
    Table  2.  Conductivities of surrounding rock in different formation models
    地层模型σx/(S·m−1σy/(S·m−1σz/(S·m−1
    各向同性0.250.250.25
    VTI0.250.250.10
    HTI0.250.100.25
    各向异性0.200.100.05
    下载: 导出CSV 
    | 显示表格
    图  7  不同地层随钻方位电磁波测井的响应
    Figure  7.  Logging-while-drilling azimuthal EM wave logging responses in three-layered anisotropic formations

    受垂向各向异性的影响,ARM即使在无限厚VTI和三轴各向异性介质中的响应仍不为零,此时非零响应将导致邻近存在地层界面的假象,影响DTB和界面方位评价的准确性。相比而言,无限厚HTI地层中ARM响应基本不受y方向各向异性的影响;然而,测井仪器靠近界面时,ARM在HTI地层和各向同性地层中的响应曲线分离严重,导致DTB计算结果出现误差。

    1)幅度传播矩阵递推算法能够准确、稳定计算层状三轴各向异性介质谱域电磁场分布,克服了传统系数传播矩阵存在的数值溢出问题。该递推算法可以模拟多分量感应测井和随钻方位电磁波测井在VTI、HTI和三轴各向异性介质中的响应规律。

    2)双重高斯积分适用于井斜角小于45°的低角度井,双重数值滤波系数方法可以解决大斜度井积分的问题。采样点为81个时,数值滤波系数方法的计算速度比传统方法快2个数量级以上。

    3)不同方向电导率的各向异性对多分量感应测井响应的影响严重,传统基于VTI模型的电导率解释模型不再适用。对随钻方位电磁波测井,横向和纵向各向异性则可能引起地层界面的假象,导致DTB和界面方位评价的准确性降低。对页岩、致密砂岩等复杂油气藏电磁波测井资料进行定性解释和定量处理时,必须构建合适的各向异性模型。

  • 图  1   庆城油田不同类型页岩油储层的压裂段数、投入和产出占比

    Figure  1.   Proportion comparison of number of fracturing sections, input, and output among different types of shale oil reservoirs in Qingcheng Oilfield

    图  2   不同裂缝间距下的地层压力变化情况对比

    Figure  2.   Comparison of formation pressure variation at different fracture spacing

    图  3   不同基质渗透率的有效渗流距离对比

    Figure  3.   Comparison of effective seepage distance at differentmatrix permeability

    图  4   不同类型页岩油储层单井最终可采储量与进液强度的关系

    Figure  4.   Relation between single-well EUR and fluid injection intensity in different types of shale oil reservoirs

    图  5   同步增能和压后增能示意

    Figure  5.   Synchronous and post-fracturing energy enhancement

    图  6   同步增能和压后增能下的含油饱和度对比

    Figure  6.   Comparison of oil saturation under synchronous and post-fracturing energy enhancement

    表  1   庆城油田页岩油储层与国内外页岩油储层特征参数对比

    Table  1   Characteristic parameter comparison of shale oil reservoirs in Qingcheng Oilfield and those in China and other countries

    对比地层沉积
    环境
    埋深/
    m
    油层厚度/
    m
    孔隙
    度,%
    渗透率/
    mD
    含油饱和
    度,%
    气油比/
    (m3·t−1
    原油黏度/
    (mPa·s)
    压力系数水平应
    力差/
    MPa
    脆性指
    数,%
    鄂尔多斯盆地延长组湖相1 600~
    2 200
    5~156.0~11.00.110~
    0.140
    67.7~72.475~1221.21~1.960.77~0.844~635~45
    准噶尔盆地芦草沟组湖相2 700~
    3 900
    10~138.0~14.60.010~
    0.012
    78.0~80.018~2211.70~21.501.20~1.605~950~51
    三塘湖盆地条湖组湖相2 000~
    2 800
    5~208.0~18.00.100~
    0.500
    55.0~76.558.00~83.000.901~531~54
    松辽盆地白垩系湖相1 700~
    2 200
    10~305.0~18.00.020~
    0.500
    48.0~55.04.00~8.001.10~1.323~6
    北美二叠纪盆地浅海相2 134~
    2 895
    400~6008.0~12.00.010~
    1.000
    75.0~88.050~1400.15~0.531.05~1.501~345~60
    下载: 导出CSV

    表  2   庆城油田页岩油储层孔隙尺度及孔隙类型划分

    Table  2   Pore scale and pore type division of shale oil reservoirs in Qingcheng Oilfield

    孔隙种类孔隙半径/μm孔隙类型孔隙数量
    大孔隙>20.0原生粒间孔
    铸模孔
    中孔隙10.0~20.0粒间孔隙
    颗粒溶孔
    岩屑溶孔
    较少
    小孔隙2.0~10.0残余粒间孔
    粒内溶孔
    杂基溶孔
    较多
    微孔隙0.5~2.0残余粒间孔
    溶蚀微孔隙
    晶间孔隙
    黏土矿物晶间孔
    纳米孔隙≤0.5微溶孔
    晶间孔隙
    晶内孔隙
    很多
    下载: 导出CSV

    表  3   华H6平台水平井压裂参数及开发效果对比

    Table  3   Comparison of fracturing parameters and development effect of horizontal wells in Platform Hua H6

    井号水平
    段长
    度/m
    I+II类
    长度/
    m
    压裂
    段数
    裂缝密度/(簇·
    (100m)–1
    加砂
    量/m3
    入地液
    量/m3
    1年累
    计产油量/t
    华H6-11529 694228.34158310374936
    华H6-215641139258.62500334984714
    华H6-31468 4542310.3 2577325274356
    华H6-41260 7641910.5 3233261854069
    华H6-51323 841198.92587255963420
    华H6-62 02910572710.2 3062537805225
    华H6-715881157237.92575279335766
    华H6-8211012502611.7 2440526044998
    华H6-91 95914202812.4 5601438933315
    华H6-111252 779167.75560225574313
    华H6-121191 957198.74649267095343
    下载: 导出CSV
  • [1] 雷群,翁定为,熊生春,等. 中国石油页岩油储集层改造技术进展及发展方向[J]. 石油勘探与开发,2021,48(5):1035–1042.

    LEI Qun, WENG Dingwei, XIONG Shengchun, et al. Progress and development directions of shale oil reservoir stimulation technology of China National Petroleum Corporation[J]. Petroleum Exploration and Development, 2021, 48(5): 1035–1042.

    [2] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001

    LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001

    [3] 焦方正,邹才能,杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发,2020,47(6):1067–1078.

    JIAO Fangzheng, ZOU Caineng, YANG Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067–1078.

    [4] 付金华,李士祥,牛小兵,等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发,2020,47(5):870–883.

    FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870–883.

    [5] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007

    FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007

    [6] 付锁堂,姚泾利,李士祥,等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质,2020,42(5):698–710. doi: 10.11781/sysydz202005698

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology and Experiment, 2020, 42(5): 698–710. doi: 10.11781/sysydz202005698

    [7] 李士祥,牛小兵,柳广弟,等. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质,2020,41(4):719–729. doi: 10.11743/ogg20200406

    LI Shixiang, NIU Xiaobing, LIU Guangdi, et al. Formation and accumulation mechanism of shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 719–729. doi: 10.11743/ogg20200406

    [8] 付金华,郭雯,李士祥,等. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749–1761.

    FU Jinhua, GUO Wen, LI Shixiang, et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1749–1761.

    [9] 李树同,李士祥,刘江艳,等. 鄂尔多斯盆地长7段纯泥页岩型页岩油研究中的若干问题与思考[J]. 天然气地球科学,2021,32(12):1785–1796.

    LI Shutong, LI Shixiang, LIU Jiangyan, et al. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1785–1796.

    [10] 马文忠,王永宏,张三,等. 鄂尔多斯盆地陕北地区长7段页岩油储层微观特征及控制因素[J]. 天然气地球科学,2021,32(12):1810–1821.

    MA Wenzhong, WANG Yonghong, ZHANG San, et al. Microscopic characteristics and controlling factors of Chang 7 Member shale oil reservoir in Northern Shaanxi Area, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1810–1821.

    [11] 张斌,毛治国,张忠义,等. 鄂尔多斯盆地三叠系长7段黑色页岩形成环境及其对页岩油富集段的控制作用[J]. 石油勘探与开发,2021,48(6):1127–1136.

    ZHANG Bin, MAO Zhiguo, ZHANG Zhongyi, et al. Black shale formation environment and its control on shale oil enrichment in Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1127–1136.

    [12] 周庆凡,金之钧,杨国丰,等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质,2019,40(3):469–477. doi: 10.11743/ogg20190303

    ZHOU Qingfan, JIN Zhijun, YANG Guofeng, et al. Shale oil exploration and production in the U. S. : status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469–477. doi: 10.11743/ogg20190303

    [13] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075

    [14]

    BAI Xiaohu, ZHANG Kuangsheng, TANG Meirong, et al. Development and application of cyclic stress fracturing for tight oil reservoir in Ordos Basin[R]. SPE 197746, 2019.

    [15] 李杉杉,孙虎,张冕,等. 长庆油田陇东地区页岩油水平井细分切割压裂技术[J]. 石油钻探技术,2021,49(4):92–98. doi: 10.11911/syztjs.2021080

    LI Shanshan, SUN Hu, ZHANG Mian, et al. Subdivision cutting fracturing technology for horizontal shale oil wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 92–98. doi: 10.11911/syztjs.2021080

    [16] 慕立俊,赵振峰,李宪文,等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质,2019,40(3):626–635. doi: 10.11743/ogg20190317

    MU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626–635. doi: 10.11743/ogg20190317

    [17]

    FU Suotang, YU Jian, ZHANG Kuangsheng, et al. Investigation of multistage hydraulic fracture optimization design methods in horizontal shale oil wells in the Ordos Basin[J]. Geofluids, 2020: 8818903.

    [18]

    ZHANG Kuangsheng, ZHUANG Xiangqi, TANG Meirong, et al. Integrated optimisation of fracturing design to fully unlock the Chang 7 tight oil production potential in Ordos Basin[R]. URTEC 198315, 2019.

    [19]

    ZHANG Kuangsheng, TANG Meirong, DU Xianfei, et al. Application of integrated geology and geomechanics to stimulation optimization workflow to maximize well potential in a tight oil reservoir, Ordos Basin, northern central China[R]. ARMA-2019-2187, 2019.

    [20] 张矿生,唐梅荣,杜现飞,等. 鄂尔多斯盆地页岩油水平井体积压裂改造策略思考[J]. 天然气地球科学,2021,32(12):1859–1866.

    ZHANG Kuangsheng, TANG Meirong, DU Xianfei, et al. Considerations on the strategy of volume fracturing for shale oil horizontal wells in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1859–1866.

    [21] 焦方正. 鄂尔多斯盆地页岩油缝网波及研究及其在体积开发中的应用[J]. 石油与天然气地质,2021,42(5):1181–1188. doi: 10.11743/ogg20210515

    JIAO Fangzheng. FSV estimation and its application to development of shale oil via volume fracturing in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1181–1188. doi: 10.11743/ogg20210515

    [22] 许琳,常秋生,杨成克,等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质,2019,40(3):535–549. doi: 10.11743/ogg20190309

    XU Lin, CHANG Qiusheng, YANG Chengke, et al. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag[J]. Oil & Gas Geology, 2019, 40(3): 535–549. doi: 10.11743/ogg20190309

    [23] 王小军,梁利喜,赵龙,等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质,2019,40(3):661–668. doi: 10.11743/ogg20190321

    WANG Xiaojun, LIANG Lixi, ZHAO Long, et al. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661–668. doi: 10.11743/ogg20190321

    [24] 陈作,刘红磊,李英杰,等. 国内外页岩油储层改造技术现状及发展建议[J]. 石油钻探技术,2021,49(4):1–7. doi: 10.11911/syztjs.2021081

    CHEN Zuo, LIU Honglei, LI Yingjie,et al. The current status and development suggestions for shale oil reservoir stimulation at home and abroad[J]. Petroleum Drilling Techniques, 2021, 49(4): 1–7. doi: 10.11911/syztjs.2021081

    [25] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058

    YAN Lin, CHEN Fuli, WANG Zhiping,et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058

    [26] 欧阳伟平, 张冕, 孙虎,等. 页岩油水平井压裂渗吸驱油数值模拟研究[J]. 石油钻探技术,2021,49(4):143–149. doi: 10.11911/syztjs.2021083

    OUYANG Weiping, ZHANG Mian, SUN Hu, et al. Numerical simulation of Oil displacement by fracturing imbibition in horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 143–149. doi: 10.11911/syztjs.2021083

  • 期刊类型引用(5)

    1. 穆瑞东,王琦,张莹辉. 超高密度复合盐水钻井液流变性调控及应用. 辽宁化工. 2023(02): 302-305 . 百度学术
    2. 邱艺,马天寿,陈颖杰,杨赟,邓昌松. 泥质粉砂储层欠平衡水平井井壁稳定性演化规律. 中南大学学报(自然科学版). 2023(03): 967-983 . 百度学术
    3. 徐声驰,刘锐,孟鑫,刘博文,孙志高,付基友,翟晓鹏,张军. 基于井眼坍塌角度和坍塌深度预测模型的泥岩水平段井壁稳定性评价方法. 石油钻采工艺. 2023(02): 136-142 . 百度学术
    4. 刘送永,徐保龙,秦立学,孟庆皓,李洪盛. 煤矿巷道掘进长距离快速超前钻探工艺策略及配套机具研究. 煤炭科学技术. 2023(S2): 229-239 . 百度学术
    5. 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议. 石油钻探技术. 2022(05): 1-8 . 本站查看

    其他类型引用(1)

图(6)  /  表(3)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  279
  • PDF下载量:  144
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-02-21
  • 刊出日期:  2022-04-05

目录

/

返回文章
返回