EM-MWD信号在钻柱中传输的影响因素研究

张浩, 毕雪亮, 刘维凯, 徐月庆, 宋明星, 邵帅

张浩, 毕雪亮, 刘维凯, 徐月庆, 宋明星, 邵帅. EM-MWD信号在钻柱中传输的影响因素研究[J]. 石油钻探技术, 2021, 49(6): 125-130. DOI: 10.11911/syztjs.2021128
引用本文: 张浩, 毕雪亮, 刘维凯, 徐月庆, 宋明星, 邵帅. EM-MWD信号在钻柱中传输的影响因素研究[J]. 石油钻探技术, 2021, 49(6): 125-130. DOI: 10.11911/syztjs.2021128
ZHANG Hao, BI Xueliang, LIU Weikai, XU Yueqing, SONG Mingxing, SHAO Shuai. Investigation of the Factors that Influence EM-MWD Signal Transmission in Drill Strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125-130. DOI: 10.11911/syztjs.2021128
Citation: ZHANG Hao, BI Xueliang, LIU Weikai, XU Yueqing, SONG Mingxing, SHAO Shuai. Investigation of the Factors that Influence EM-MWD Signal Transmission in Drill Strings[J]. Petroleum Drilling Techniques, 2021, 49(6): 125-130. DOI: 10.11911/syztjs.2021128

EM-MWD信号在钻柱中传输的影响因素研究

基金项目: 国家自然科学基金项目“页岩气层CO2干法压裂相态控制机理研究”(编号:52004064)资助
详细信息
    作者简介:

    张浩(1996—),男,河北固安人,2019年毕业于邢台学院电子信息科学与技术专业,油气井工程专业在读硕士研究生,主要研究方向为油气井工程测量及过程控制。E-mail:870548612@qq.com。

  • 中图分类号: TE927

Investigation of the Factors that Influence EM-MWD Signal Transmission in Drill Strings

  • 摘要: 在现有电磁随钻测量(EM-MWD)系统中,钻柱是重要的EM-MWD信号传输信道。为深入了解影响EM-MWD信号在钻柱中传输效果的因素,基于等效传输线法对EM-MWD信号信道进行了建模,并使用Ansys软件进行了有限元计算,分析了地层分层情况下不同规格钻柱在交变电磁场中传输的能量损耗以及套管对EM-MWD信号传输的影响规律。研究发现:EM-MWD信号在钻柱中的能量损耗会随着功率和频率增大而增加,当信号频率超过100 Hz时损耗增加更加明显;不同规格的钻柱传输信号的效果不同,但当钻柱壁厚与外径的比为0.08~0.20时,EM-MWD信号传输效果较好;在钻柱上加套管会对EM-MWD信号的传输产生屏蔽作用,影响传输效果,不过当井下EM-MWD信号的发射频率在50 Hz以下时,套管的影响较小。研究结果更加明确了钻柱自身属性对EM-MWD信号传输的影响,可为EM-MWD系统的改进和设计提供参考。
    Abstract: In electromagnetic measurement while drilling (EM-MWD) systems, drill strings are important channels for EM-MWD signal transmission. For a better understanding of the factors that influence the EM-MWD signal transmission effect in drill strings, the equivalent transmission line method was used to model the EM-MWD signal channel, and the finite element calculation was made using ANSYS software. With the analysis of strata division, research was conducted on the energy loss of signal transmission by drill strings with different specifications in an alternating electromagnetic field and the influence law of casing on EM-MWD signal transmission. Several findings were obtained in this paper. The increase in power and frequency would enhance the energy loss of EM-MWD signal in drill strings, and when the signal frequency exceeded 100 Hz, the loss grew more evidently. The transmission effect varied for different drill strings, but it was better when the ratio of drill string wall thickness to outer diameter was 0.08–0.20. Adding casing on the drill string would shield the transmission of EM-MWD signal and affect the transmission effect. However, when the frequency of downhole EM-MWD signal was below 50 Hz, the impact of casing is small. The research results further clarified the influence of the drill string's own properties on the EM-MWD signal transmission, which can provide a reference for the improvement and design of the EM-MWD system.
  • 图  1   EM-MWD信号传输模型

    Figure  1.   EM-MWD signal transmission model

    图  2   有限元分析模型示意

    Figure  2.   Finite element analysis model

    图  3   EM-MWD电位模拟结果

    Figure  3.   Results of EM-MWD electric potential simulation

    图  4   EM-MWD电流模拟结果

    Figure  4.   Results of EM-MWD current simulation

    图  5   EM-MWD信号在外径127.0 mm、内径108.6 mm钻柱中的能量损耗

    Figure  5.   Energy loss of EM-MWD signal in the drill string with an outer diameter (OD) of 127.0 mm and an inner diameter (ID) of 108.6 mm

    图  6   EM-MWD信号在外径88.9 mm、内径76.0 mm钻柱中的能量损耗

    Figure  6.   Energy loss of EM-MWD signal in the drill string with an OD of 88.9 mm and an ID of 76.0 mm

    图  7   不同壁厚条件下地面接收到的EM-MWD信号强度与钻柱外径的关系

    Figure  7.   Relationship between the EM-MWD signal intensity received on the surface and the OD of drill strings under different wall thicknesses

    图  8   有无套管两种情况下钻柱中电压信号强度分布

    Figure  8.   Voltage signal intensity distribution in drill strings with or without casing

    图  9   不同发射频率、不同套管长度下钻柱传输到地面的信号强度

    Figure  9.   Signal intensity transmitted to the surface under different transmission frequencies and casing lengths

  • [1] 陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究[J]. 石油钻探技术,2018,46(3):114–119.

    CHEN Xiaohui, GAO Bingtang, SONG Zhaohui. Research on downhole electromagnetic repeater transmission characteristics in ultra high resistivity gypsum-salt layers[J]. Petroleum Drilling Techniques, 2018, 46(3): 114–119.

    [2] 康厚清. 煤矿井下EM-MWD仪器研制[J]. 煤矿安全,2019,50(4):135–137, 141.

    KANG Houqing. Development of underground electromagnetic wireless measurement while drilling instrument[J]. Safety in Coal Mines, 2019, 50(4): 135–137, 141.

    [3] 熊皓,胡斌杰. 随钻测量电磁传输信道研究[J]. 地球物理学报,1997,40(3):431–441. doi: 10.3321/j.issn:0001-5733.1997.03.016

    XIONG Hao, HU Binjie. Investigation of the EM channel characteristics for MWD[J]. Chinese Journal of Geophysics, 1997, 40(3): 431–441. doi: 10.3321/j.issn:0001-5733.1997.03.016

    [4] 范业活,聂在平,李天禄. 随钻电磁波传输理论模型与信道特性分析[J]. 电波科学学报,2013,28(5):909–914.

    FAN Yehuo, NIE Zaiping, LI Tianlu. EM channel theory model and characteristics analysis for MWD[J]. Chinese Journal of Radio Science, 2013, 28(5): 909–914.

    [5] 邵春,韩坚,褚志伟,等. 基于ANSYS的接地发射电极对双向EM-MWD下传信号的影响分析[J]. 煤田地质与勘探,2019,47(1):206–210. doi: 10.3969/j.issn.1001-1986.2019.01.032

    SHAO Chun, HAN Jian, CHU Zhiwei, et al. Analysis on influence of ground transmitting electrode on bidirectional EM-MWD signal transmission based on ANSYS[J]. Coal Geology & Exploration, 2019, 47(1): 206–210. doi: 10.3969/j.issn.1001-1986.2019.01.032

    [6]

    MUGOYA R, YAO Aiguo, DE LA PAIX M J. The study of signal propagation in electromagnetic-measurement while drilling (EM-MWD) telemetry systems[J]. Journal of American Science, 2011, 7(3): 153–157.

    [7] 刘科满, 仵杰. 电磁随钻传输理论与应用[M]. 北京: 科学出版社, 2020: 27–31.

    LIU Keman, WU Jie. Theory and application of electromagnetic transmission while drilling[M]. Beijing: Science Press, 2020: 27–31.

    [8]

    FAN Yehuo, NIE Zaiping, SUN Xiangyang. Theoretical study on the while drilling electromagnetic signal transmission of horizontal well[C]//Proceedings of 2017 2nd International Conference on Software, Multimedia and Communication Engineering (SMCE 2017), Shanghai: Science and Engineering Research Center, 2017: 248–253.

    [9] 刘伟,黄崇君,连太炜. 电磁波随钻测量仪器测量效果影响因子分析[J]. 钻采工艺,2017,40(5):11–14. doi: 10.3969/J.ISSN.1006-768X.2017.05.04

    LIU Wei, HUANG Chongjun, LIAN Taiwei. Numerical analysis of factors affecting EM-MWD electromagnetic signal attenuation[J]. Drilling & Production Technology, 2017, 40(5): 11–14. doi: 10.3969/J.ISSN.1006-768X.2017.05.04

    [10] 肖俊. 涪陵工区应用电磁波随钻仪器(EM-MWD)的探讨[J]. 江汉石油科技,2017(3):47–50, 68.

    XIAO Jun. Discussion on application of electromagnetic wave while-drilling instrument (EM-MWD) in Fuling working area[J]. Jianghan Petroleum Science and Technology, 2017(3): 47–50, 68.

    [11] 王家豪. 煤矿井下电磁波随钻测量系统关键技术研究[D]. 武汉: 中国地质大学, 2015.

    WANG Jiahao. Research on key technology of EM-MWD in underground coal mine[D]. Wuhan: China University of Geosciences, 2015.

    [12] 张东旭,白璟,谢意,等. 电磁波接力传输随钻测量系统研制与应用[J]. 天然气工业,2014,34(2):76–80. doi: 10.3787/j.issn.1000-0976.2014.02.012

    ZHANG Dongxu, BAI Jing, XIE Yi, et al. Development and application of an electromagnetic relay transmission MWD system[J]. Natural Gas Industry, 2014, 34(2): 76–80. doi: 10.3787/j.issn.1000-0976.2014.02.012

    [13] 王家豪,董浩斌,石智军,等. 煤矿井下随钻测量电磁传输信道建模[J]. 煤炭学报,2015,40(7):1705–1710.

    WANG Jiahao, DONG Haobin, SHI Zhijun, et al. Modeling an EM channel for MWD in underground coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1705–1710.

    [14] 李辉. 随钻电磁波电阻率测井仪器响应数值模拟及应用[M]. 镇江: 江苏大学出版社, 2017: 25–29.

    LI Hui. Numerical simulation and application on electromagnetic wave resistivity logging-while-drilling tool responses[M]. Zhenjiang: Jiangsu University Press, 2017: 25–29.

    [15] 马西奎. 电磁场有限元与解析结合解法[M]. 北京: 科学出版社, 2016: 68–71.

    MA Xikui. Finite element and analytical solution of electromagnetic field[M]. Beijing: Science Press, 2016: 68–71.

    [16] 李凯. 分层介质中的电磁场和电磁波[M]. 杭州: 浙江大学出版社, 2010: 21–25.

    LI Kai. Fields and waves in layered media[M]. Hangzhou: Zhejiang University Press, 2010: 21–25.

    [17] 文盛乐,李泽军,杨江河. 导电介质内传播电磁波特性研究[J]. 湖南文理学院学报(自然科学版),2006,18(1):19–22.

    WEN Shengle, LI Zejun, YANG Jianghe. Discussion of propagation electromagnetic wave in conductive medium[J]. Journal of Hunan University of Arts and Science(Natural Science Edition), 2006, 18(1): 19–22.

    [18] 陈庭根, 管志川. 钻井工程理论与技术[M]. 东营: 中国石油大学出版社, 2000: 74–75.

    CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2000: 74–75.

    [19]

    LIU Keman. Model and control method of a downhole electromagnetic transmitter for EM-MWD system[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107210. doi: 10.1016/j.petrol.2020.107210

  • 期刊类型引用(15)

    1. 李博,郑瑞强,齐悦,张振华,纪博,李相勇,田玉栋. 大庆深层水平井钻井关键技术. 石油机械. 2025(01): 74-79 . 百度学术
    2. 陈炼,魏小虎,曹强,周岩,杨迎新,胡川,赵志杰,伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用. 中国机械工程. 2024(02): 371-379 . 百度学术
    3. 程伟,幸雪松,楼一珊,朱亮,尹彪. 三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2024(11): 21-28 . 百度学术
    4. 王峰,钟耀敬,刘书杰,李瑞玲. 塔里木果勒西区块火成岩优快钻井技术. 西部探矿工程. 2023(02): 28-30+34 . 百度学术
    5. 刘和兴,罗云旭,刘伟吉,马传华,吴艳辉,祝效华,柳亚亚. 异形PDC齿切削破碎非均质花岗岩机理研究. 石油机械. 2022(04): 22-31 . 百度学术
    6. 车卫勤,许雅潇,岳小同,罗忠保,姜维,杜晶,赵小勇. 渝西大足区块超深超长页岩气水平井钻井技术. 石油钻采工艺. 2022(04): 408-414 . 百度学术
    7. 靳大松,霍如军,张家振,阮大勇,刘立超,李志敏,徐海龙. 塔里木油田富源区块钻井提速关键技术. 钻采工艺. 2021(01): 125-128 . 百度学术
    8. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
    9. 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 . 本站查看
    10. 王学龙,何选蓬,刘先锋,程天辉,李瑞亮,富强. 塔里木克深9气田复杂超深井钻井关键技术. 石油钻探技术. 2020(01): 15-20 . 本站查看
    11. 李宁,周波,文亮,韩雨恬,王天博,卢宗武. 塔里木油田库车山前砾石层提速技术研究. 钻采工艺. 2020(02): 143-146 . 百度学术
    12. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    13. 张茂林,罗科海,王青. 准噶尔盆地东部深层火成岩钻井提速技术应用. 西部探矿工程. 2020(09): 104-106+110 . 百度学术
    14. 刘忠,侯辉辉,胡伟. 基于预破碎的岩石切削试验及分析. 石油机械. 2019(12): 38-43+57 . 百度学术
    15. 杨博仲,姚建林,沈欣宇. 新型抗扭转冲击结构锥形齿PDC钻头的研发与应用. 钻采工艺. 2018(05): 12-15+7-8 . 百度学术

    其他类型引用(6)

图(9)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 21
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-08-19
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2021-11-24

目录

    /

    返回文章
    返回