Research and Field Test on Life-Long Water Control Completion Technology in Offshore Oilfields
-
摘要: 为了解决海上油田砂岩底水油藏水平井开发过程中底水快速锥进的问题,在分析流入控制装置(ICD)和自动流入控制装置(AICD)控水完井技术的优势与不足的基础上,研究了海上油田全寿命控水完井技术。该技术结合ICD和AICD控水完井技术的优势,在油井投产初期通过抑制高渗段来均衡水平井水平段供液剖面,投产中后期通过“自动控制流量”来抑制水平段高含水段出液,实现自动控水,起到延缓油井含水率上升的作用。海上油田全寿命控水完井技术在X油田H油藏W1井进行了现场试验,与同油藏生产井对比发现,该技术对水平井开发过程中的含水率上升有抑制作用,值得扩大规模试验。Abstract: Aiming at solving the problem of rapid coning of bottom water during the development by horizontal wells in the sandstone bottom water reservoir of offshore oilfields, a life-long water control completion technology in offshore oilfields was studied based on the analysis of the advantages and disadvantages of inflow control device (ICD) and autonomousinflow control device (AICD). The technology combined the advantages of ICD and AICD. During the early production period, the high permeability section was constrained to balance the liquid supply profile in the horizontal section of the horizontal wells. In the later periods, the "autonomous flow rate control" was used to constrain the liquid flow of the horizontal high water content section, which could slow down the increase in water cut by autonomous water control. The technology was tested on-site in Well W1 in Reservoir H of Oilfield X. By comparing with production wells in the same reservoir, it is shown that the life-long water control completion technology can restrain the increase of water cut in the development by horizontal wells and is worthy of expanding the test scale.
-
-
表 1 W1井全寿命控水完井方案
Table 1 Life-long water control completion plan for Well W1
水平井分段 起始深度/ m 控水工具数量 控水工具开孔数 第一段 2 632.31 4 5 封隔器-1 2 678.02 第二段 2 683.17 5 9 封隔器-2 2 740.39 第三段 2 745.54 5 7 封隔器-3 2 802.73 第四段 2 807.88 5 8 封隔器-4 2 865.34 第五段 2 870.51 6 3 表 2 H油藏7口水平井的相关情况
Table 2 Statistical information of seven horizontal wells in Reservoir H
试验井 井位 层位 油柱高
度/m水平段
长度/m完井
工艺W1井 位于背斜翼部低部位 H 5.60 315 CAICD W22井 位于背斜翼部低部位 H 6.10 341 ICD W9井 位于背斜翼部低部位 H 8.10 342 SCREEN W21井 位于背斜高部位 H 14.50 357 SCREEN W15井 位于背斜翼部低部位 H 12.30 329 SCREEN W5井 位于背斜高部位 H 10.00 257 ICD W2井 位于背斜翼部低部位 H 8.00 225 ICD 注:CAICD为全寿命控水完井,SCREEN为筛管完井。 -
[1] 苏崇华. 海上低幅背斜砂岩油田挖潜稳产技术[J]. 中国海上油气,2007,19(3):176–178, 183. doi: 10.3969/j.issn.1673-1506.2007.03.009 SU Chonghua. A technology to tap potential and stabilize production for offshore sandstone oilfields of low-amplitude anticline[J]. China Offshore Oil and Gas, 2007, 19(3): 176–178, 183. doi: 10.3969/j.issn.1673-1506.2007.03.009
[2] 方全堂,张锋利,段永刚,等. 水平井流入控制阀控底水原理及影响因素分析[J]. 西南石油大学学报(自然科学版),2012,34(6):107–112. FANG Quantang, ZHANG Fengli, DUAN Yonggang, et al. Analyses of influencing factors and mechanism of controlling bottom water in horizontal well with inflow control device[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(6): 107–112.
[3] 薛衡,黄祖熹,王贺华,等. Ahdeb油田水平井控水完井及一体化耦合模型[J]. 石油与天然气地质,2019,40(2):423–429. doi: 10.11743/ogg20190220 XUE Heng, HUANG Zuxi, WANG Hehua, et al. Water control completion of horizontal wells in Ahdeb Oilfield and an integrated coupling model[J]. Oil & Gas Geology, 2019, 40(2): 423–429. doi: 10.11743/ogg20190220
[4] 高晓飞,罗东红,闫正和,等. 一种减缓底水锥进的新方法: 中心管技术及其在西江23-1油田水平井开发中的应用[J]. 中国海上油气,2010,22(2):114–118. doi: 10.3969/j.issn.1673-1506.2010.02.010 GAO Xiaofei, LUO Donghong, YAN Zhenghe, et al. A new method for delaying coning in bottom water reservoir: application of stinger technology in horizontal well development of XJ23-1 Oilfield[J]. China Offshore Oil and Gas, 2010, 22(2): 114–118. doi: 10.3969/j.issn.1673-1506.2010.02.010
[5] 熊友明,罗东红,唐海雄,等. 延缓和控制底水锥进的水平井完井新方法[J]. 西南石油大学学报(自然科学版),2009,31(1):103–106. XIONG Youming, LUO Donghong, TANG Haixiong, et al. New-type horizontal well completion method of delaying and controlling Bottom water coning[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(1): 103–106.
[6] 赵旭,龙武,姚志良,等. 水平井砾石充填调流控水筛管完井技术[J]. 石油钻探技术,2017,45(4):65–70. ZHAO Xu, LONG Wu, YAO Zhiliang, et al. Completion techniques involving gravel-packing inflow-control screens in horizontal wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 65–70.
[7] 田翔,李黎,谢雄,等. 水平井平衡控水筛管(ICD)完井技术在惠州油田的应用[J]. 石油天然气学报,2012,34(9):238–240. TIAN Xiang, LI Li, XIE Xiong, et al. Application of ICD completion technology in Huizhou Oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(9): 238–240.
[8] 张瑞霞,王继飞,董社霞,等. 水平井控水完井技术现状与发展趋势[J]. 钻采工艺,2012,35(4):35–37. doi: 10.3969/J.ISSN.1006-768X.2012.04.12 ZHANG Ruixia, WANG Jifei, DONG Shexia, et al. Status quo and development trends of the water-controlling completion technology of horizontal well[J]. Drilling & Production Technology, 2012, 35(4): 35–37. doi: 10.3969/J.ISSN.1006-768X.2012.04.12
[9] 徐鑫. 水平井控流筛管完井技术研究及应用[J]. 石油钻探技术,2014,42(3):71–75. XU Xin. Development and application of flow control screen completion for horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(3): 71–75.
[10] 徐鑫,魏新芳,余金陵. 遇油遇水自膨胀封隔器的研究与应用[J]. 石油钻探技术,2009,37(6):67–69. doi: 10.3969/j.issn.1001-0890.2009.06.015 XU Xin, WEI Xinfang, YU Jinling. Researches and applications of oil/water expandable packers[J]. Petroleum Drilling Techniques, 2009, 37(6): 67–69. doi: 10.3969/j.issn.1001-0890.2009.06.015
[11] 帅春岗,段永刚,冉林,等. 水平井ICD控水方法研究[J]. 石油钻采工艺,2012,34(1):85–88. doi: 10.3969/j.issn.1000-7393.2012.01.024 SHUAI Chungang, DUAN Yonggang, RAN Lin, et al. Research on the method of controlling bottom water with Inflow Control Devices (ICD) in horizontal well[J]. Oil Drilling & Production Technology, 2012, 34(1): 85–88. doi: 10.3969/j.issn.1000-7393.2012.01.024
[12] 孙荣华,陈阳,王绍先,等. 水平井分段控流完井技术应用效果评价方法[J]. 石油钻探技术,2019,47(4):41–46. doi: 10.11911/syztjs.2019089 SUN Ronghua, CHEN Yang, WANG Shaoxian, et al. Evaluating the application effect for staged fluid control completion technology in horizontal wells[J]. Petroleum Drilling Techniques, 2019, 47(4): 41–46. doi: 10.11911/syztjs.2019089
[13] 罗伟,林永茂,李海涛,等. 非均质底水油藏水平井ICD完井优化设计[J]. 石油学报,2017,38(10):1200–1209. doi: 10.7623/syxb201710011 LUO Wei, LIN Yongmao, LI Haitao, et al. ICD completion optimization design of horizontal wells in heterogeneous bottom-water reservoirs[J]. Acta Petrolei Sinica, 2017, 38(10): 1200–1209. doi: 10.7623/syxb201710011
[14] 朱橙,刘华伟,李登,等. AICD管柱工艺在海上油田水平井中的控水效果分析[J]. 中国石油和化工标准与质量,2016,36(8):125–128. doi: 10.3969/j.issn.1673-4076.2016.08.068 ZHU Cheng, LIU Huawei, LI Deng, et al. Analysis of water control effect of AICD string technology in horizontal wells of offshore oilfield[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(8): 125–128. doi: 10.3969/j.issn.1673-4076.2016.08.068
[15] 郭松毅,汪志明,曾泉树. 基于有序聚类的水平井AICD控水完井分段方法[J]. 石油钻探技术,2020,48(2):70–75. doi: 10.11911/syztjs.2020013 GUO Songyi, WANG Zhiming, ZENG Quanshu. An ordered clustering based segmentation method for water control completion with AICD in horizontal wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 70–75. doi: 10.11911/syztjs.2020013
[16] AAKRE H, HALVORSEN B, WERSWICK B, et al. Autonomous inflow control valve for heavy and extra-heavy oil[R]. SPE 171141, 2014.
[17] 赵崇镇. 水平井自适应调流控水装置研制与应用[J]. 石油钻探技术,2016,44(3):95–100. ZHAO Chongzhen. Development and application of an autonomous inflow control device in horizontal wells[J]. Petroleum Drilling Techniques, 2016, 44(3): 95–100.
-
期刊类型引用(5)
1. 何滔,顾栩. TRB管无补料液压胀形波纹管的研究. 锻压技术. 2023(04): 103-109 . 百度学术
2. 王建军,陶兴华,邹勇,薛龙. 膨胀波纹管焊接工艺及焊缝膨胀性能分析. 石油钻探技术. 2022(03): 61-65 . 本站查看
3. 马汝涛,罗淮东,徐丙贵,周英鹏. 可膨胀波纹管截面设计计算与评估方法. 石油机械. 2019(03): 14-18 . 百度学术
4. 刘鹏,陶兴华,胡彦峰,涂玉林. 提高膨胀波纹管在弯曲井眼中应用可靠性研究. 石油钻采工艺. 2019(02): 170-177 . 百度学术
5. 郭强,张德龙,黄玉文,翁炜,杨鹏,蒋睿,徐军军. 可膨胀波纹管水力膨胀力学特性研究. 探矿工程(岩土钻掘工程). 2019(12): 50-55 . 百度学术
其他类型引用(3)