Processing math: 100%

纳米材料改善压裂液性能及驱油机理研究

刘建坤, 蒋廷学, 黄静, 吴春方, 贾文峰, 陈晨

刘建坤, 蒋廷学, 黄静, 吴春方, 贾文峰, 陈晨. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118
引用本文: 刘建坤, 蒋廷学, 黄静, 吴春方, 贾文峰, 陈晨. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118
LIU Jiankun, JIANG Tingxue, HUANG Jing, WU Chunfan, JIA Wenfeng, CHEN Chen. Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118
Citation: LIU Jiankun, JIANG Tingxue, HUANG Jing, WU Chunfan, JIA Wenfeng, CHEN Chen. Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1): 103-111. DOI: 10.11911/syztjs.2021118

纳米材料改善压裂液性能及驱油机理研究

基金项目: 国家自然科学基金项目“页岩油气高效开发基础理论”(编号:51490653)、中国石化科技攻关项目“鄂南致密油藏两级裂缝高导流复合压裂技术研究”(编号:P17005-5)联合资助
详细信息
    作者简介:

    刘建坤(1984—),男,青海海东人,2006年毕业于东北石油大学石油工程专业,2011年获中国科学院研究生院流体力学专业硕士学位,副研究员,主要从事储层改造工艺技术及理论方面的研究工作。E-mail:jiankliu@163.com

  • 中图分类号: TE357.1

Study on Mechanism of the Fracturing Fluid Performance Improvement and Oil Displacement Using Nanomaterials

  • 摘要: 为给研发功能性压裂液提供理论依据,在纳米尺度(50 nm)对SiO2进行C8和季铵盐(QAS)修饰,合成了疏水纳米材料SiO2-C8和疏水带电纳米材料SiO2-QAS,评价了SRFP型聚合物清洁压裂液分别加入SiO2,SiO2-C8及SiO2-QAS等3种纳米材料后的配伍性、稳定性及综合性能;利用量化模拟手段,建立了纳米材料在砂岩表面的吸附结构模型及吸附动力学模型,分析了纳米材料在砂岩表面的吸附及油水分离特征。试验及模拟结果表明:SiO2,SiO2-C8及SiO2-QAS等3种纳米材料在压裂液中具有较好的分散稳定性,可有效降低表界面张力,表现出良好的耐温、耐剪切性能;SiO2-C8和SiO2-QAS加入压裂液后有利于砂岩表面油分子被置换出,促进油水分离;SiO2-C8和SiO2–QAS加入压裂液后可有效改善压裂液性能,提高驱油效果,降低压裂液波及范围内的含油饱和度。研究结果可为功能性压裂液发展和研制提供理论依据,为优化致密油、页岩油压裂方案和优选压裂液提供参考。
    Abstract: To provide a theoretical basis for the development of functional fracturing fluids, SiO2 was modified with C8 and quaternary ammonium salt (QAS) on nanoscale (50 nm). The hydrophobic nanomaterial SiO2-C8 and hydrophobic charged nanomaterial SiO2-QAS were synthesized. The compatibility, stability, and comprehensive performance of the SRFP polymer clean fracturing fluid systems were evaluated as nanomaterials SiO2, SiO2-C8, and SiO2-QAS were added. Quantitative simulation methods were employed to build the adsorption structure models and adsorption kinetics models of the nanomaterials on the sandstone surface. The adsorption and oil-water separation characteristics of nanomaterials on sandstone surfaces were analyzed. The experimental and simulation results show that the three nanomaterials, SiO2, SiO2-C8, and SiO2-QAS, display favorable dispersion stability in fracturing fluids. They can effectively reduce the surface and interfacial tension and demonstrate good temperature and shear resistance. SiO2-C8 and SiO2-QAS nanomaterials are beneficial to the replacement of oil molecules on the sandstone surface and the oil-water separation when they are added into fracturing fluids. The addition of nanomaterials SiO2-C8 and SiO2-QAS can also effectively improve the performance of fracturing fluids, enhance oil displacement, and reduce oil saturation within the spread range of fracturing fluids. The research results can provide a theoretical basis for the development of functional fracturing fluids and a reference for fracturing design optimization and fracturing fluid selection for tight oil and shale oil.
  • 地下储气库是将长输管道输送的天然气重新注入地下空间而形成的一种人工气田或气藏[1],在天然气供应链中发挥着天然气调峰、安全保供、管网平衡优化等重要作用[23]。地下储气库主要有气藏型[45]、含水层型[6]、盐穴型[78]、油藏型[9]、岩洞及废弃矿井型[10]等类型,其中枯竭气藏型数量最多。例如,中国石化在建的全国最大储气库—文23储气库便是枯竭砂岩气藏型储气库[11],该储气库以沙三段盐膏层为封闭层,以沙四段砂岩为储气层。文23气田经过30余年的开发,已处于枯竭状态,主块地层压力由原始状态的38.6~39.2 MPa降至3.0~4.0 MPa,压力系数由1.30~1.35降至0.10~0.60。而储气库注采气井多为大斜度井,低压易漏[12]、盐膏层段固井质量难以保证[13]是面临的主要钻井难题[14]。因此,储气库建设的关键是,要具有完整的封闭系统,主要包括盖层封闭性、断层封闭性和井筒封闭完整性3方面。与之相关的问题,国内已有学者做了一些研究:孟祥杰等人[15]采取静态评价与动态评价相结合的方法,确定冀中坳陷大5目标含水层构造改建地下储气库的盖层封闭能力良好;马小明等人[16]采用定性与定量相结合的判别方法,确定板南地下储气库的断层具有良好的封闭性;彭平等人[17]从盖层、断层、裂缝、溢出点、储层底板和井筒完整性等方面,建立了完整的储气库封闭性评价体系,并认为克拉2气田改建储气库可行。这些研究主要是从储气库选址的角度进行封闭性评价,没有充分利用前期勘探开发井的钻井井漏、油气显示等资料。储气库的封闭性评价包括钻前选址和钻井完井过程2大环节,录井主要是在注采气井的钻井过程中,充分利用钻井录井资料及前期勘探开发资料,全面评价盖层封闭性、断层及裂缝封闭性,并为井筒封闭完整性提供强有力的技术支持。因此,笔者以文23储气库为例,建立了沙三段盐膏层断缺条件下的盖层识别与评价方法,形成了基于钻井液出口流量曲线变化形态的井漏原因判别模式和断层封闭性评价方法,并建立了在沙三段盐膏层发育和断缺2种条件下钻穿盖层底界5.00~10.00 m卡准中完井深的方法,这些方法构成了枯竭砂岩气藏型储气库录井关键技术。

    储气库库址评价与优选是储气库建设面临的首要问题[1819],储气库体系通常包括地下油气藏、注采气井、观察井、集输系统、压缩机、计量设备、脱水装置以及外输管道[20]。录井是在选定储气库库址后,注采气井钻井过程中的一项石油工程技术。枯竭气藏型储气库建设利用的是油气开发程度较高、地层孔隙压力已大幅度降低的地层,相比于油气勘探开发井,录井的核心任务发生了重大变化,建立地层柱状剖面、发现油气显示、进行地层压力随钻预监测及溢流预警已不再是录井的主要任务。

    我国的第一座地下储气库始建于1996年[21],迄今在建和已建成的储气库至少有26座[1122],但已发表的关于录井的论文仅见1篇,且是研究中完卡层的[13]。文23储气库录井主要包括岩屑录井、元素录井和综合录井,其中综合录井包括钻时录井、气测录井、工程参数及钻井液参数录井3项。可见,储气库录井的主要任务有2项:一是为钻井完井工程服务,二是为储气库密封完整性服务,二者相辅相成。

    储气库录井的技术关键是:1)充分利用注采气井的钻井录井资料及前期的勘探开发资料,准确识别盖层的岩性和厚度,评价盖层封闭的有效性;2)准确发现井漏,判别井漏原因,评价盖层中的断层、裂缝封闭性;3)及时卡准中完井深,为优化井身结构及提高井筒封闭完整性提供技术支撑。其中,盖层、断层及裂缝的封闭性已经在储气库选址阶段进行了论证,因此,录井的作用是在钻井过程中进行更为细致的评价或验证,避免出现不封闭的情况。

    文23储气库盖层的岩性主要为盐岩、膏岩、泥岩及过渡岩性。通过录井现场识别盖层岩性的主要手段有3种:1)岩屑录井,基于肉眼的观察与描述;2)X射线荧光(XRF)元素录井或X射线衍射(XRD)矿物录井;3)出、入口电导率录井[23]。盐岩的主要成分是NaCl、KCl,盐岩被钻头破碎后,在井筒条件下常常会溶解在钻井液中,通过岩屑录井难以发现,XRF的Na、Cl等元素特征也不明显,只能以出、入口电导率急剧升高作为识别盐膏层的主要特征。对于膏质岩类,岩屑录井能够见到白色的石膏,XRF录井S元素的含量明显高于基值。

    用岩屑XRF元素录井中的Cl代表盐岩类,S代表膏岩类,Al代表泥岩类,在盐膏层发育段,三者含量之和(记为ω(Cl+S+Al))占元素含量总和(记为Σω(Ei))的百分数连续10.00 m以上大于25%为有效盖层;在盐膏层欠发育(断缺)段,三者含量之和占元素含量总和的百分数连续25.00 m以上大于20%为有效盖层[24],结果见表1。如储3-6井,沙三段盐膏层断缺,测井解释为不含膏,难以确定该井是否存在盖层,但通过岩屑录井及XRF录井测得的S元素含量得知,2 700.00~2 780.00 m井段具有明显的含膏特征(见图1),2 676.50~2 725.00 m和2 734.00~2 779.00 m井段Cl,S和Al元素含量之和占元素含量总和的百分数均超过20%,表明存在有效盖层。同样沙三段盐膏层断缺的邻井Xw103井,通过录井在沙四段2 756.00~2 991.40 m井段发现51层(总厚度1 33.00 m)有含气显示,通过测井解释沙四段2 754.10~3 030.30 m井段存在82层气层(总厚度189.90 m),表明存在盖层,且具有很好的封闭性。因此,盖层封闭性评价需要将岩性录井(岩屑+XRF)与邻井钻井时的油气显示情况结合起来分析,尤其是在溢出点、断层带附近的井,邻井油气显示等资料是评价盖层封闭性的有力证据。

    表  1  基于元素录井的文23储气库有效盖层评价标准
    Table  1.  Elemental mud logging-based effective caprock evaluation criteria for Wen 23 Gas Storage
    盖层特征 ω (Cl+S+Al)/
    ω(Ei),%
    有效盖层连续厚度/m
    沙三段盐膏层发育 >30 >10.00
    沙三段盐膏层断缺 >20 >25.00
    下载: 导出CSV 
    | 显示表格
    图  1  储3–6井盖层评价结果
    Figure  1.  Evaluation results of the caprock in Well Chu 3–6

    对于枯竭气藏型储气库,通过录井识别断层时主要从3方面判别:1)非工程因素(双泵变单泵、变阀门数)导致的钻井液出口流量、钻井液池液面等工程参数突然降低,指示钻遇断层、张裂缝或不整合面而发生井漏,将发生井漏的层位、深度与井区顶面构造图、油藏剖面图、地层剖面图相结合可进一步做出准确判别;2)气测全烃、甲烷含量突然降低,意味着钻遇断层或裂缝,这是因为钻井液返出量降低或失返,且裂缝中的气体在前期开发过程中更容易被采出;3)特征元素曲线形态重复出现,指示钻遇逆断层,并可根据重复间距计算断层断距。对封闭性有影响的主要是正断层。

    根据钻井液出口流量曲线的变化形态,可以将井漏原因判别模式分为天然张裂缝、诱导缝、基质渗透性漏失和失返性漏失4种,如图2所示[25]。文23储气库注采井在钻进沙三段盐膏层上部地层、盐间地层和下部地层时井漏较为频繁,由于文23储气库是枯竭气藏型储气库,容易凭感觉将井漏原因归结为地层压力亏空,但其为砂岩储层,孔隙度为8.80%~13.86%,渗透率为0.27~17.10 mD,压力亏空导致的漏失应该为基质渗透性漏失,钻井液出口流量曲线具有先缓慢下降、过了漏失层后再缓慢抬升的形态特征(见图2(c));沙三段盐膏层上部地层和下部地层发生井漏时,其出口流量曲线主要为天然张裂缝模式(见图2(a))或失返性漏失(见图2(d))模式,说明是钻遇张裂缝或断层所致;而且,文23气田开发初期气井钻井过程中也常常发生井漏,储气库注采井与邻井井漏发生的深度具有较好的一致性,且都分布在断层附近。

    图  2  基于出口流量曲线的井漏原因判别模式
    Figure  2.  Outlet flowrate curve-based well leakage discrimination modes

    断层是影响储气库封闭性的重要因素[16]。沙四段气藏是在基岩隆起背景上继承性发育并被断层复杂化的背斜构造。文23气田断层按其级别大小及所起的作用可分为边界断层、分块断层和断块区内部小断层3大类。各级断层的封闭性不一致,边界断层和分块断层封闭性均较好,内部小断层中有少数也具有封闭性。沙三段盐膏层的上部及下部断层,大多没有断穿沙三段盐膏层,对盖层的封闭性没有影响,所以在钻井过程中需要高度重视沙三段盐膏层钻进过程中发生的井漏。如储4–4井,现场描述为“自从转为密度1.42 kg/L的饱和盐水钻井液钻进后,2 040.00 m~2 810.00 m(中完井深)井段,一直存在渗漏现象,下钻到底开泵初期比较严重,最大漏速10 m3/h”,并将漏失原因归结为钻遇“断层、地层交界面”,但出口流量曲线与泵冲有较好的对应关系(见图3(a)),说明曲线形态的变化是由工程因素引起的,而非地层因素引发井漏产生的;储4–4井的邻井W23–1井,于2 766.10~3 017.10 m井段累计采气11.351 46 × 108 m3(见图3(b)),证明其盖层具有良好的封闭性。

    图  3  储4–4井的录井剖面与油藏剖面
    Figure  3.  Mud logging profile and reservoir profile of Well Chu 4–4

    井筒完整性的主要影响因素是盖层及盖层井段的固井质量,而固井质量与井身结构密切相关。文23储气库注采井采用三开井身结构,要求二开钻至沙三段盐膏层底界以深50.00 m。很多井钻穿沙三段盐膏层即进入沙四段砂层,沙四段砂层自上而下分为8个砂层组,其中1—2砂层组物性相对较差,3—8砂层组作为储气库的主要储层,由于二开固井质量不理想[13],钻井工程人员希望二开钻穿盐膏层底界的井段越短越好,最好能控制在5.00 m或10.00 m以内。文23储气库的盖层分为沙三段盐膏层发育与断缺2种类型,从XRF元素特征来看,沙三段盐膏层发育段的盐间地层具有明显的高含S(≥8.0%)、低含Al(≤5.5%)、低含Si(≤14.0%)的特征,而盐下地层则具有相反的特征(见图4)。沙三段盐膏层断缺井段,盐间地层与盐下地层的Si、Al特征并不明显,在刻度相同的情况下,通过S元素含量降低与Si元素含量增高的曲线交叉点,可以有效识别沙三段盐膏层的底界。如储3–6井,其典型特征是S元素含量骤降,在4.00 m范围内从11.16%降至4.97%;而Si元素含量陡升,在4.00 m范围内从9.31%升至16.66%,由此可以确定沙三段盐膏层的底界为2 772.00 m(见图1(b))。因此,无论沙三段盐膏层发育还是断缺,均可在沙三段盐膏层底界以深4.00~10.00 m范围内卡准中完井深,若将岩屑取样间距由2.00 m改为1.00 m,则可进一步缩短钻出沙三段盐膏层底界的距离。

    图  4  沙三段盐膏层发育段盐间与盐下地层的元素特征
    Figure  4.  Elemental characteristics of the inter-salt and pre-salt strata in the salt-gypsum interval of Es3 Member

    文23储气库一期工程部署了66口注采气井,在取全取准录井资料的同时,全面评价了盖层封闭及断层、裂缝封闭的有效性,并卡准盐膏层底界,为提高井筒封闭完整性提供了有力的技术支撑。如储2–11井,沙三段盐膏层较为发育,通过S和Si元素曲线的交叉点,确定沙三段盐膏层的底界深度为2 772.00 m,该深度位于现场录井描述的最后一个盐层底界(2 662.00 m)之下10.00 m,由于留的口袋较短,中完测井探不出盐膏层的底界。根据沙三段盐膏层发育的盖层评价标准(见表1),确定具有封闭性的盖层为2 550.00~2 777.00 m井段(见图5(a)),厚度达227.00 m。该井北偏东方向的文23–22井附近(见图6),沙三段盐膏层断缺,担心存在溢出点,但文23–22井2 738.00~2 939.00 m井段累计产气8 788.7×108 m3,证明存在有效盖层,侧向也是封堵的。该井出口流量曲线发生3次显著变化(见图5(b)),井深2 712.00 m处的突降是阀门数量变化引起的,井深2 806.00 m处的突降是双泵变单泵引起的,井深2 956.00 m处发生了漏失,共漏失100 m3密度0.96 kg/L的钻井液,根据出口流量曲线形态,判断为钻遇砂体内的断层或张裂缝所致(见图2(a)),对盖层的封闭性没有影响。因此,该井沙四段储气层的顶部、侧向都是封闭的,准确的中完井深卡取也为提高井筒封闭性提供了有力支撑。

    图  5  储2–11井录井剖面
    Figure  5.  Mud logging profile of Well Chu 2–11
    图  6  储2–11井油藏剖面
    Figure  6.  Reservoir profile of Well Chu 2–11

    1)枯竭砂岩气藏储气库录井的技术关键是在保障钻井安全的同时,从盖层封闭性、断层封闭性及井筒完整性3个角度全面评价储气库的井筒封闭性,并提供相应的技术支持。

    2)高度重视井漏,准确判别井漏原因,并结合早期邻井的钻井工程异常、油气显示等资料,可有效评价盖层段断层、裂缝的封闭性。

    3)通过XRF录井的特征元素及元素比值并结合岩屑实物录井,可有效识别盖层的岩性,并准确卡准盖层的底界深度,为井筒完整性评价提供有力的技术支撑。

    致谢:在论文撰写过程中,得到了中国石化石油工程技术研究院刘江涛、吴海燕及中石化中原石油工程有限公司陈栋、孟韶彬等人的大力支持,在此一并致谢!

  • 图  1   单分散纳米SiO2球形颗粒的形成过程

    Figure  1.   Formation process of monodisperse spherical nano-SiO2 particles

    图  2   3种纳米材料的红外光谱图

    Figure  2.   Infrared spectrogram of 3 nanomaterials

    图  3   纳米SiO2微球的SEM图像

    Figure  3.   SEM images of nano SiO2 particles

    图  4   SiO2纳米微球的分散时间

    Figure  4.   Dispersion time of SiO2 nanoparticles

    图  5   纳米材料SiO2-C8的分散时间

    Figure  5.   Dispersion time of nanomaterial SiO2-C8

    图  6   纳米材料SiO2-QAS的分散时间

    Figure  6.   Dispersion time of nanomaterial SiO2-QAS

    图  7   中黏SRFP型清洁压裂液的流变曲线

    Figure  7.   Rheological curve of medium-viscosity SRFP clean fracturing fluids

    图  8   中黏纳米驱油压裂液的流变曲线

    Figure  8.   Rheological curve of medium-viscosity nano oil displacement fracturing fluids

    图  9   (12×3×1)α-SiO2(010)面物理模型

    Figure  9.   Physical model of (12×3×1)α-SiO2(010) surface

    图  10   固定后的(12×3×1)α-SiO2(010)面物理模型

    Figure  10.   Physical model of fixed (12×3×1)α-SiO2(010) surface

    图  11   SiO2-C8在α-SiO2(010)面的吸附结构模型

    Figure  11.   Adsorption structure model of SiO2-C8 on α-SiO2(010) surface

    图  12   SiO2-QAS在α-SiO2(010)面的吸附结构模型

    Figure  12.   Adsorption structure model of SiO2-QAS on α-SiO2(010) surface

    图  13   SiO2-C8在砂岩表面的吸附聚集过程

    Figure  13.   Adsorption and deposition process of SiO2-C8 on the sandstone surface

    图  14   SiO2-QAS在砂岩表面的吸附聚集过程

    Figure  14.   Adsorption and deposition process of SiO2-QAS on the sandstone surface

    图  15   加入SiO2-C8后的油水分离过程

    Figure  15.   Oil-water separation process after adding SiO2-C8

    图  16   加入SiO2-QAS后的油水分离过程

    Figure  16.   Oil-water separation process after adding SiO2-QAS

    表  1   低黏清洁压裂液加入纳米材料前后的表面张力

    Table  1   Surface tension before and after nanomaterials added to low-viscosity clean fracturing fluids mN/m

    纳米材料加量,%压裂液SiO2SiO2-C8SiO2-QAS
    0.133.617.722.328.8
    0.515.720.723.0
    1.013.820.222.4
    2.012.518.624.2
    下载: 导出CSV

    表  2   低黏清洁压裂液加入纳米材料前后的表界面张力

    Table  2   Surface and interfacial tension before and after nanomaterials added into low-viscosity clean fracturing fluids

    纳米材料表面张力/(mN·m–1 界面张力/(mN·m–1
    加入前加入后 加入前加入后
    SiO233.615.7 2.8580.212
    SiO2-C833.620.72.8580.239
    SiO2-QAS33.623.02.8580.256
    下载: 导出CSV

    表  3   C6H14、SiO2-C8、SiO2-QAS在α-SiO2(010)面的吸附能

    Table  3   Adsorption energy of C6H14, SiO2-C8 and SiO2-QAS molecules on the α-SiO2(010) surface

    MEad(SiO2-M)/eVEt(SiO2-M)/eVEt(SiO2)/eVEtM)/eV
    C6H14–1 722 287.31–6 388.85–1 715 896.91–1.54
    SiO2-C8–1 777 032.99–61 132.64–1 715 896.91–3.44
    SiO2-QAS–1 803 366.81–87 460.07–1 715 896.91–9.83
    下载: 导出CSV
  • [1] 夏宏泉,梁景瑞,文晓峰. 基于CQ指标的长庆油田长6—长8段致密油储层划分标准研究[J]. 石油钻探技术,2020,48(3):114–119.

    XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The standard division of tight oil reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114–119.

    [2] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20.

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20.

    [3] 王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103–110.

    WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 103–110.

    [4] 孙金声,许成元,康毅力,等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1–10.

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1–10.

    [5] 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术[J]. 石油钻探技术,2021,49(2):9–13.

    CUI Yueming, SHI Haimin, ZHANG Qing. Optimized drilling and completion technology for horizontal wells in tight oil reservoirs in the Jilin Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 9–13.

    [6] 巩联浩,刘继梓,武兴,等. 裂缝性致密油藏二氧化炭吞吐基质–裂缝间流体渗流特征研究[J]. 特种油气藏,2021,28(1):118–124.

    GONG Lianhao, LIU Jizi, WU Xing, et al. Study on seepage characteristics of fluid between matrix and fracture in CO2 huff-puff process in fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 118–124.

    [7] 王彦玲,王坤,金家锋,等. 纳米材料在压裂液体系中的应用进展[J]. 精细石油化工,2016,33(6):63–67. doi: 10.3969/j.issn.1003-9384.2016.06.015

    WANG Yanling, WANG Kun, JIN Jiafeng, et al. The application of nanometer material in fracturing fluid system[J]. Speciality Petrochemicals, 2016, 33(6): 63–67. doi: 10.3969/j.issn.1003-9384.2016.06.015

    [8] 韦青,李治平,白瑞婷,等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术,2016,44(5):109–116.

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition tight sandstone[J]. Petroleum rilling Techniques, 2016, 44(5): 109–116.

    [9] 郭建设,周福建,胡晓玲,等. 三塘湖盆地致密油水平井增能压裂力学机理[J]. 断块油气田,2021,28(1):57–62. doi: 10.3969/J.ISSN.1000-3754.2013.05.020

    GUO Jianshe, ZHOU Fujian, HU Xiaoling, et al. Mechanical mechanism of horizontal well energized fracturing of tight oil in Santanghu Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 57–62. doi: 10.3969/J.ISSN.1000-3754.2013.05.020

    [10] 白晓虎,齐银,何善斌,等. 致密储层水平井压裂–补能–驱油一体化重复改造技术[J]. 断块油气田,2021,28(1):63–67.

    BAI Xiaohu, QI Yin, HE Shanbin, et al. Integrated re-stimulating technology of fracturing-replenishment-displacement of horizontal wells in tight reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 63–67.

    [11] 彭振,王中华,何焕杰,等. 纳米材料在油田化学中的应用[J]. 精细石油化工进展,2011,12(7):8–12. doi: 10.3969/j.issn.1009-8348.2011.07.003

    PENG Zhen, WANG Zhonghua, HE Huanjie, et al. Application of nanometer materials in oilfield chemistry[J]. Advances in Fine Petrochemicals, 2011, 12(7): 8–12. doi: 10.3969/j.issn.1009-8348.2011.07.003

    [12] 侯吉瑞,闻宇晨,屈鸣,等. 纳米材料提高油气采收率技术研究及应用[J]. 特种油气藏,2020,27(6):47–53.

    HOU Jirui, WEN Yuchen, QU Ming, et al. Research and application of nano-materials to enhance oil and gas recovery technolo-gy[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 47–53.

    [13] 蒋莉,袁丽,郑清国. 纳米膨润土复合体的研究与应用[J]. 石油钻探技术,2009,37(3):57–60.

    JIANG Li, YUAN Li, ZHENG Qingguo. Researches and application of nanometer bentonite complex[J]. Petroleum Drilling Techniques, 2009, 37(3): 57–60.

    [14] 褚奇,孔勇,杨帆,等. 多苯基芳基硅烷偶联剂改性纳米SiO2封堵剂[J]. 断块油气田,2017,24(2):281–284.

    CHU Qi, KONG Yong, YANG Fan, et al. Nano-silica dioxide plugging agent modified by polyphenyl aryl silanes coupling agent[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 281–284.

    [15] 李强,李志勇,张浩东,等. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液,2020,37(1):23–30.

    LI Qiang, LI Zhiyong, ZHANG Haodong, et al. Study on foam drilling fluid stabilized with nanometerials optimized with RSM[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 23–30.

    [16] 任保友,蒲晓林,曹成,等. 纳米钻井液提高地层承压能力实验[J]. 石油钻采工艺,2018,40(2):179–184.

    REN Baoyou, PU Xiaolin, CAO Cheng, et al. Experimental study on improving the formation pressure-bearing capacity by using nano-drilling fluid[J]. Oil Drilling & Production Technology, 2018, 40(2): 179–184.

    [17] 辛迎春. 纳米SiO2 改性稠油高效破乳剂的研制及应用[J]. 石油钻探技术,2008,35(5):75–77.

    XIN Yingchun. Research and application of modified nano-sized silica demulsifier for heavy oil[J]. Petroleum Drilling Techniques, 2008, 35(5): 75–77.

    [18] 王伟吉,邱正松,钟汉毅,等. 钻井液用新型纳米润滑剂SD-NR的制备及特性[J]. 断块油气田,2016,23(1):113–116.

    WANG Weiji, QIU Zhengsong, ZHONG Hanyi, et al. reparation and properties of nanoparticle-based lubricant SD-NR for drilling fluids[J]. Fault-Block Oil & Gas Field, 2016, 23(1): 113–116.

    [19] 雷天猛,王秀军,王姗姗,等. 纳米二氧化硅改性聚合物的油藏适用性评价与微观驱油效果研究[J]. 石油钻探技术,2021,49(1):107–112.

    LEI Tianmeng, WANG Xiujun, WANG Shanshan, et al. Research on reservoir applicability evaluation and micro oil flooding effect of a nano-Silica modified polymer[J]. Petroleum Drilling Techniques, 2021, 49(1): 107–112.

    [20] 王胜,谌强,袁学武,等. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术,2021,49(6):73–80.

    WANG Sheng, CHEN Qiang, YUAN Xuewu, et al. Research on a nano-composite cement slurry system suitable for low-temperature formations[J]. Petroleum Drilling Techniques, 2021, 49(6): 73–80.

    [21]

    HUANG T, CREWS J B, AGRAWAL G. Nanoparticle pseudocrosslinked micellar fluids: optimal solution for fluid-loss control with internal breaking[R]. SPE 128067, 2010.

    [22]

    CREWS J B, HUANG Tianping. Performance enhancements of viscoelastic surfactant stimulation fluids with nanoparticles[R]. SPE 113533, 2008.

    [23]

    CREWS J B, HUANG Tianping, WOOD W R. The future of fracturing-fluid technology and rates of hydrocarbon recovery[R]. SPE 115475, 2008.

    [24]

    CREWS J B, GOMAA A M. Nanoparticle-associated surfactant micellar fluids: an alternative to crosslinked polymer systems[R]. SPE 157055, 2012.

    [25]

    GURLUK M R, NASR-EL-DIN H A, CREWS J B. Enhancing the performance of viscoelastic surfactant fluids using nanoparticles[R]. SPE 164900, 2013.

    [26] 杨兆中,朱静怡,李小刚,等. 含纳米颗粒的黏弹性表面活性剂泡沫压裂液性能[J]. 科学技术与工程,2018,18(10):42–47. doi: 10.3969/j.issn.1671-1815.2018.10.007

    YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. The performance of viscoelastic foamed fracturing fluids with nanoparticles[J]. Science Technology and Engineering, 2018, 18(10): 42–47. doi: 10.3969/j.issn.1671-1815.2018.10.007

    [27] 段瑶瑶,杨战伟,杨江,等. 一种新型纳米复合清洁压裂液的研究与应用[J]. 科学技术与工程,2016,16(30):68–72. doi: 10.3969/j.issn.1671-1815.2016.30.011

    DUAN Yaoyao, YANG Zhanwei, YANG Jiang, et al. Research and application of a new nanocomposite cleaning fracturing fluid[J]. Science Technology and Engineering, 2016, 16(30): 68–72. doi: 10.3969/j.issn.1671-1815.2016.30.011

    [28] 杜涛,姚奕明,蒋廷学,等. 新型疏水缔合聚合物压裂液综合性能评价[J]. 精细石油化工,2014,31(3):72–76. doi: 10.3969/j.issn.1003-9384.2014.03.017

    DU Tao, YAO Yiming, JIANG Tingxue, et al. Study on properties of new hydrophobic associating polymer fracturing fluid[J]. Speciality Petrochemicals, 2014, 31(3): 72–76. doi: 10.3969/j.issn.1003-9384.2014.03.017

    [29] 杜涛,姚奕明,蒋廷学,等. 新型疏水缔合聚合物压裂液性能研究与现场应用[J]. 精细石油化工,2015,32(2):20–24. doi: 10.3969/j.issn.1003-9384.2015.02.005

    DU Tao, YAO Yiming, JIANG Tingxue, et al. Properties and field application of a novel hydrophobic associating polymer fracturing fluid[J]. Speciality Petrochemicals, 2015, 32(2): 20–24. doi: 10.3969/j.issn.1003-9384.2015.02.005

    [30] 潘意坤,郭平,罗强,等. 致密气在α-SiO2(010)面吸附的第一性原理研究[J]. 原子与分子物理学报,2018,35(3):415–421. doi: 10.3969/j.issn.1000-0364.2018.03.009

    PAN Yikun, GUO Ping, LUO Qiang, et al. First-principles calculation of adsorption for tight gas on α-SiO2(010) surface[J]. Journal of Atomic and Molecular Physics, 2018, 35(3): 415–421. doi: 10.3969/j.issn.1000-0364.2018.03.009

  • 期刊类型引用(2)

    1. 张桂兰,曾从良. 高导流压裂技术在新疆油田的应用与分析. 内蒙古石油化工. 2023(12): 83-90 . 百度学术
    2. 张丽萍,李一强,舒振辉,赵田,王航,韩礼红. 新疆油田玛湖地区套管损坏机理及主控因素研究. 石油管材与仪器. 2022(05): 26-31 . 百度学术

    其他类型引用(0)

图(18)  /  表(3)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  310
  • PDF下载量:  130
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-10-22
  • 修回日期:  2021-10-31
  • 网络出版日期:  2021-10-27
  • 刊出日期:  2022-03-06

目录

/

返回文章
返回