大港油田大型井丛场高效钻井技术优化与应用

王国娜, 张海军, 孙景涛, 张巍, 曲大孜, 郝晨

王国娜, 张海军, 孙景涛, 张巍, 曲大孜, 郝晨. 大港油田大型井丛场高效钻井技术优化与应用[J]. 石油钻探技术, 2022, 50(2): 51-57. DOI: 10.11911/syztjs.2021116
引用本文: 王国娜, 张海军, 孙景涛, 张巍, 曲大孜, 郝晨. 大港油田大型井丛场高效钻井技术优化与应用[J]. 石油钻探技术, 2022, 50(2): 51-57. DOI: 10.11911/syztjs.2021116
WANG Guona, ZHANG Haijun, SUN Jingtao, ZHANG Wei, QU Dazi, HAO Chen. Optimization and Application of Efficient Drilling Technologies for Large-Scale Well Cluster Fields in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 51-57. DOI: 10.11911/syztjs.2021116
Citation: WANG Guona, ZHANG Haijun, SUN Jingtao, ZHANG Wei, QU Dazi, HAO Chen. Optimization and Application of Efficient Drilling Technologies for Large-Scale Well Cluster Fields in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 51-57. DOI: 10.11911/syztjs.2021116

大港油田大型井丛场高效钻井技术优化与应用

基金项目: 中国石油科技攻关重大专项“大港油区效益增储稳产关键技术研究与应用(编号:2018E-11)”资助
详细信息
    作者简介:

    王国娜(1983—),女,河南洛阳人,2007年毕业于中国石油大学(华东)资源与勘查学院,2011年获中国石油大学(华东)普查与勘探专业硕士学位,工程师,主要从事钻井工程设计及相关技术研究工作。 E-mail: wanggna@petrochina.com.cn

  • 中图分类号: TE243

Optimization and Application of Efficient Drilling Technologies for Large-Scale Well Cluster Fields in Dagang Oilfield

  • 摘要: 为了解决大港油田大型井丛场开发过程中井间防碰风险大、轨道优化难和钻井提速难等问题,根据地质工程一体化研究思路,进行了井网部署、井眼轨道及防碰设计、井身结构及配套提速工具等关键技术研究,建立了井口–靶点匹配关系、剖面类型设计优先级层序、 造斜点“V”形设计法则、井身结构与一趟钻提速工艺模板,形成了大港油田大型井丛场高效钻井技术。该技术在大港油田进行了现场应用,其中港西二号大型井丛场作为大港油田陆上最大规模井丛场,实现了56口井的安全规模开发,节约井场征地、钻井搬迁等费用1 200万元,平均单井钻井周期4.42 d,机械钻速48.64 m/h。研究与现场应用表明,大型井丛场高效钻井技术在提升井场利用率、缩短钻井周期、提高机械钻速及降低成本方面效果显著,为大港油田效益开发提供了技术支撑。
    Abstract: The development of large-scale well cluster fields in Dagang Oilfield encounters problems such as the high risk of collision between wells, difficulties in trajectory optimization and drilling acceleration, etc. According to the idea of integrating geology and engineering, the key technologies involved were studied, including well pattern deployment, wellbore trajectory and anti-collision design, casing program, and supporting drilling acceleration tools. This paper established the wellhead-target matching relationship, the priority sequence of profile type design, the V-shaped design rule for kick-off points, the casing program, and the acceleration process template of one-trip drilling. In this way, efficient drilling technologies were developed for the large-scale well cluster fields in Dagang Oilfield, and were applied to the Dagang Oilfield. The large-scale well cluster field Gangxi No.2 is the largest among the onshore well cluster fields in Dagang Oilfield. In this well cluster field, safe and scaled development of 56 wells were achieved, with a cost saving of CNY 12 million in aspects such as land expropriations for well sites and drilling relocation, and an average single-well drilling cycle of 4.42 d, and rate of penetration (ROP) of 48.64 m/h. The research and applications showed that the developed technologies displayed outstanding performance in raising the utilization rate of well sites, shortening the drilling cycle, increasing ROP, and lowering the costs. The results can provide technical support for the profitable development of Dagang Oilfield.
  • 图  1   港西一号平台井型优化示意图

    Figure  1.   Optimized well type of the Gangxi No.1 Platform

    图  2   井口–靶点的匹配关系

    Figure  2.   Wellhead–target matching relationship

    图  3   J23-52井井眼轨道优选

    Figure  3.   Wellbore trajectory selection of Well J23-52

    图  4   J23-52井防碰分离系数随造斜点变化情况

    Figure  4.   Variation of anti-collision coefficients with kick-off points of Wwll J23-52

    图  5   造斜点“V”形法则图示

    Figure  5.   V-shaped rule for kick-off points

    表  1   港西一号平台原部署方案某井设计剖面

    Table  1   Design profile for a well of the originally deployed plan on the Gangxi No. 1 Platform

    关键点井深/
    m
    井斜角/
    (°)
    方位角/
    (°)
    垂深/
    m
    全角变化率 /
    ((°)·(30m)–1
    井斜角变化率/
    ((°)·(30m)–1
    方位角变化率/
    ((°)·(30m)–1
    视平移/
    m
    造斜点 100.000 0 100.000 0 0 0
    造斜终点 251.1212.090 250.002.4002.4000 –11.19
    增斜点 870.6562.78140.07764.713.5002.4556.783253.46
    增斜终点1 122.7362.78140.07880.000 0 0 476.68
    井底点1 302.0262.78140.07962.000 0 0 635.44
    下载: 导出CSV

    表  2   羊三木一号平台某井不同剖面参数对比

    Table  2   Parameters comparison of different profiles for a well on the Yangsanmu No. 1 Platform

    剖面类型造斜点/m造斜率/((°)·(30m)–1井斜角/(°)
    单增剖面 785.252.6790.00
    双增剖面 270.003.6020.08
    1 199.523.0090.00
    下载: 导出CSV

    表  3   某页岩油井场井眼轨道参数设计结果

    Table  3   Design results of wellbore trajectory parameters for a shale oil well field

    井号造斜点/m 井斜角/(°)靶前位移/m井底位移/m井深/m
    第一第二第三 第一第二第三第四
    1-1H650.003 280.002 482.00 6.000 23.4184.35 84.35 781.524 300.00
    1-2H400.003 225.753 385.567.000 10.4186.45393.88 794.004 300.00
    1-3H500.003 000.003 507.798.000 27.0185.47521.38 858.294 293.00
    1-4H600.003 100.003 633.638.500 86.9390.13560.002 126.535 526.00
    1-5H900.003 000.003 654.025.009.5285.7987.87432.661 442.624 990.00
    1-6H800.002 900.003 489.646.000 18.3984.69470.991 418.814 934.00
    下载: 导出CSV
  • [1] 赵平起,李东平,唐世忠,等. 大港油田井丛场建设管理创新与实践[J]. 国际石油经济,2020,28(12):95–100. doi: 10.3969/j.issn.1004-7298.2020.12.013

    ZHAO Pingqi, LI Dongping, TANG Shizhong, et al. Management innovation and practice of well cluster field construction of Dagang Oilfield[J]. International Petroleum Economics, 2020, 28(12): 95–100. doi: 10.3969/j.issn.1004-7298.2020.12.013

    [2] 李兴科,孙超,许建国. 大井丛集约化效益建产开发方案优化与技术应用[J]. 特种油气藏,2018,25(2):169–174. doi: 10.3969/j.issn.1006-6535.2018.02.034

    LI Xingke, SUN Chao, XU Jianguo. Development program optimization and technology application in multi-well cluster intensification benefit production[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 169–174. doi: 10.3969/j.issn.1006-6535.2018.02.034

    [3] 赵贤正,赵平起,李东平,等. 地质工程一体化在大港油田勘探开发中探索与实践[J]. 中国石油勘探,2018,23(2):6–14. doi: 10.3969/j.issn.1672-7703.2018.02.002

    ZHAO Xianzheng, ZHAO Pingqi, LI Dongping, et al. Research and practice of geology-engineering integration in the exploration and development of Dagang Oilfield[J]. China Petroleum Exploration, 2018, 23(2): 6–14. doi: 10.3969/j.issn.1672-7703.2018.02.002

    [4] 李治衡,庹海洋,王文,等. 渤海油田表层大尺寸井眼预斜技术探索与应用[J]. 非常规油气,2020,7(1):87–92. doi: 10.3969/j.issn.2095-8471.2020.01.017

    LI Zhiheng, TUO Haiyang, WANG Wen, et al. Exploration and application of preventive oblique technology for large-scale borehole in surface of Bohai Oilfield[J]. Unconventional Oil & Gas, 2020, 7(1): 87–92. doi: 10.3969/j.issn.2095-8471.2020.01.017

    [5] 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术[J]. 石油钻探技术,2021,49(2):9–13. doi: 10.11911/syztjs.2020123

    CUI Yueming, SHI Haimin, ZHANG Qing. Optimized drilling and completion technology for horizontal wells in tight oil reservoirs in the Jilin Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 9–13. doi: 10.11911/syztjs.2020123

    [6] 张伟国,严德,陈彬,等. 惠州区块深层火成岩地层钻井提速技术[J]. 石油钻采工艺,2020,42(5):583–586.

    ZHANG Weiguo, YAN De, CHEN Bin, et al. ROP improvement technologies used in the deep igneous formation of Huizhou Block[J]. Oil Drilling & Production Technology, 2020, 42(5): 583–586.

    [7] ABRAMOV A. 丛式井平台设计及井丛分组优化[J]. 石油勘探与开发,2019,46(3):588–593.

    ABRAMOV A. Optimization of well pad design and drilling-well clustering[J]. Petroleum Exploration and Development, 2019, 46(3): 588–593.

    [8] 许军富,徐文浩,耿应春. 渤海人工岛大型丛式井组加密防碰优化设计技术[J]. 石油钻探技术,2018,46(2):24–29.

    XU Junfu, XU Wenhao, GENG Yingchun. Anti-collision optimization design technology for large-scale infill drilling for cluster well groups in the artificial island of the Bohai Sea[J]. Petroleum Drilling Techniques, 2018, 46(2): 24–29.

    [9] 刘衍前. 涪陵页岩气田加密井钻井关键技术[J]. 石油钻探技术,2020,48(5):21–26. doi: 10.11911/syztjs.2020039

    LIU Yanqian. Key drilling technologies of infill wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 21–26. doi: 10.11911/syztjs.2020039

    [10] 范红康,刘劲歌,臧艳彬,等. 涪陵页岩气田焦石坝区块调整井钻井技术[J]. 石油钻探技术,2021,49(3):48–54. doi: 10.11911/syztjs.2020122

    FAN Hongkang, LIU Jinge, ZANG Yanbin, et al. Drilling technology for adjustment wells of the Jiaoshiba Block in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(3): 48–54. doi: 10.11911/syztjs.2020122

    [11] 秦文政,党军,臧传贞,等. 玛湖油田玛18井区 “工厂化” 水平井钻井技术[J]. 石油钻探技术,2019,47(2):15–20. doi: 10.11911/syztjs.2019025

    QIN Wenzheng, DANG Jun, ZANG Chuanzhen, et al. Factorization drilling technology of the horizontal well in the Ma18 Well Block of the Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 15–20. doi: 10.11911/syztjs.2019025

    [12] 倪华峰,杨光,张延兵. 长庆油田页岩油大井丛水平井钻井提速技术[J]. 石油钻探技术,2021,49(4):29–33. doi: 10.11911/syztjs.2021076

    NI Huafeng, YANG Guang, ZHANG Yanbing. ROP improvement technologies for large-cluster horizontal shale oil wells in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 29–33. doi: 10.11911/syztjs.2021076

    [13] 闫铁,徐婷,毕雪亮,等. 丛式井平台井口布置方法[J]. 石油钻探技术,2013,41(2):13–16. doi: 10.3969/j.issn.1001-0890.2013.02.003

    YAN Tie, XU Ting, BI Xueliang, et al. Wellhead arranged method of cluster well pad[J]. Petroleum Drilling Techniques, 2013, 41(2): 13–16. doi: 10.3969/j.issn.1001-0890.2013.02.003

    [14] 葛云华,鄢爱民,高永荣,等. 丛式水平井钻井平台规划[J]. 石油勘探与开发,2005,32(5):94–100. doi: 10.3321/j.issn:1000-0747.2005.05.022

    GE Yunhua, YAN Aimin, GAO Yongrong, et al. Drilling pad optimization for oilfield development by cluster horizontal wells[J]. Petroleum Exploration and Development, 2005, 32(5): 94–100. doi: 10.3321/j.issn:1000-0747.2005.05.022

    [15] 谭玮,房舟,罗成波,等. 致密高应力水平井优快钻完井难点与对策[J]. 断块油气田,2020,27(5):653–656.

    TAN Wei, FANG Zhou, LUO Chengbo, et al. Difficulties and solutions of optimized fast drilling and completion of horizontal well in tight and high stressed formation[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 653–656.

    [16] 陈新勇,徐明磊,马樱,等. 杨税务潜山油气藏大位移井钻井完井关键技术[J]. 石油钻探技术,2021,49(2):14–19. doi: 10.11911/syztjs.2021010

    CHEN Xinyong, XU Minglei, MA Ying, et al. Drilling and completion technologies of extended-reach wells in the Yangshuiwu buried hill reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14–19. doi: 10.11911/syztjs.2021010

    [17] 李琪,刘毅,王六鹏,等. 密集井网直井段井眼轨道交碰风险计算新方法[J]. 石油钻采工艺,2021,43(1):29–33.

    LI Qi, LIU Yi, WANG Liupeng, et al. A new method for calculating the wellbore collision risk of vertical sections of dense cluster wells[J]. Oil Drilling & Production Technology, 2021, 43(1): 29–33.

    [18] 胡中志,侯怡,李卓静,等. 密集丛式井上部井段防碰设计关键参数临界值计算分析[J]. 石油钻采工艺,2019,41(4):448–454.

    HU Zhongzhi, HOU Yi, LI Zhuojing, et al. Calculation and analysis of key parameter critical values in anti-collision design for upper sections of dense cluster wells[J]. Oil Drilling & Production Technology, 2019, 41(4): 448–454.

    [19] 李奎周,陈树民,赵海波,等. 松辽盆地青山口组泥页岩孔隙压力预测方法及其应用[J]. 大庆石油地质与开发,2018,37(6):7–12.

    LI Kuizhou, CHEN Shumin, ZHAO Haibo, et al. Predicting method of the pore pressure in Qingshankou-Formation mud shale of Songliao Basin and its application[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(6): 7–12.

  • 期刊类型引用(8)

    1. 赵显威. 直井段偏移对后期定向钻井作业的影响探讨. 西部探矿工程. 2020(10): 77-78 . 百度学术
    2. 方勇. 定向钻井提速技术分析及应用. 中国石油和化工标准与质量. 2019(01): 206-207 . 百度学术
    3. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    4. 李超,窦亮彬,李振兴,康恺,周鑫,韩田兴. 青西油田深井钻井提速技术与应用. 断块油气田. 2018(03): 376-380 . 百度学术
    5. 高军,吴娜,董龙. 青西油田深井配套工艺技术研究与应用. 化工管理. 2018(23): 98 . 百度学术
    6. 席博. 分析定向钻井技术常见问题及处理措施. 中国石油和化工标准与质量. 2017(06): 114-115 . 百度学术
    7. 程天辉,王维韬,王树超. 塔里木泛哈拉哈塘地区扭力冲击钻井技术. 石油钻采工艺. 2017(01): 53-56 . 百度学术
    8. 张瑜. 定向钻井技术常见问题与对策. 当代化工研究. 2016(02): 12-13 . 百度学术

    其他类型引用(1)

图(5)  /  表(3)
计量
  • 文章访问数:  483
  • HTML全文浏览量:  310
  • PDF下载量:  122
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2022-01-16
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2022-04-05

目录

    /

    返回文章
    返回