影响控压放水施工效果的关键参数模拟研究

杨宏伟, 李军, 刘金璐, 柳贡慧, 高旭, 赵轩刚

杨宏伟, 李军, 刘金璐, 柳贡慧, 高旭, 赵轩刚. 影响控压放水施工效果的关键参数模拟研究[J]. 石油钻探技术, 2022, 50(2): 85-91. DOI: 10.11911/syztjs.2021105
引用本文: 杨宏伟, 李军, 刘金璐, 柳贡慧, 高旭, 赵轩刚. 影响控压放水施工效果的关键参数模拟研究[J]. 石油钻探技术, 2022, 50(2): 85-91. DOI: 10.11911/syztjs.2021105
YANG Hongwei, LI Jun, LIU Jinlu, LIU Gonghui, GAO Xu, ZHAO Xuangang. Simulation Study on the Key Parameters Affecting Pressure-Controlled Drainage Effect[J]. Petroleum Drilling Techniques, 2022, 50(2): 85-91. DOI: 10.11911/syztjs.2021105
Citation: YANG Hongwei, LI Jun, LIU Jinlu, LIU Gonghui, GAO Xu, ZHAO Xuangang. Simulation Study on the Key Parameters Affecting Pressure-Controlled Drainage Effect[J]. Petroleum Drilling Techniques, 2022, 50(2): 85-91. DOI: 10.11911/syztjs.2021105

影响控压放水施工效果的关键参数模拟研究

基金项目: 国家自然科学基金重点项目“深水油气钻采井筒压力控制基础研究”(编号:51734010)、中国石油大学(北京)科研基金(编号:2462020XKBH011)联合资助
详细信息
    作者简介:

    杨宏伟(1990—),男,河北张家口人,2014年毕业于西南石油大学石油工程专业,2020年获中国石油大学(北京)油气井工程专业博士学位,主要从事控压钻井、智能井控方面的研究工作。E-mail:zerotone@cup.edu.cn。

  • 中图分类号: TE21

Simulation Study on the Key Parameters Affecting Pressure-Controlled Drainage Effect

  • 摘要: 控压放水可以有效降低高压盐水层的地层压力,但不清楚施工过程中一些关键参数对控压放水效果的影响程度。为此,分析了控压放水的技术特征、工艺特点,总结了控压放水的工艺流程;基于地层盐水渗流和井筒流动理论,考虑关井期间地层压力的恢复,建立了参数动态变化、可以模拟控压放水全过程的数学模型。以塔里木油田克深A井为例,进行了模拟计算,模拟结果与实测结果误差较小。分析影响放水效果和周期的关键参数发现:关井时间越短,地层压力下降速度越快;节流阀承压极限从5 MPa提高至15 MPa,循环排污次数可以减少一半;当地层渗透率较低时,前7次放水效果显著,因此确定试放水时间为7 d。根据研究结果提出了相应的改进措施,以便更好地控制关键施工参数,提高控压放水效果。
    Abstract: Pressure-controlled drainage can effectively reduce formation pressure in a high-pressure brine layer, but the influence of some key parameters on its effect in operating process is still unclear. The characteristics of pressure-controlled drainage technology were analyzed, and its technological process was summarized. On the basis of the seepage theory of formation brine and wellbore flow theory, a mathematical model with dynamic parameters was built taking into consideration the formation pressure recovery in the shut-in period to simulate the entire process of pressure-controlled drainage. Taking Well Keshen A in Tarim Oilfield as an example, simulations were conducted and the results by simulation and measurement were analyzed. It was found that the error between them was small. The analysis of key parameters affecting the effects and cycles of water drainage showed that the shorter the shut-in time, the quicker the decline in formation pressure. When the pressure-bearing limit of throttle was raised from 5 MPa to 15 MPa, the number of times for cyclic sewage disposal could be reduced by half. However, when the formation permeability was low, the effects of the first seven operations of water drainage were remarkable, and thus the period for trial drainage was set to seven days. According to the above results, relevant improving measures were put forward to better control the key operational parameters, so as to enhance the effects of pressure-controlled drainage.
  • 大港油田在页岩油勘探开发方面实现了零的突破[1-2],在沧东凹陷孔二段、歧口凹陷沙一段和沙三下亚段发现260 km2页岩油储集区,探明储量超2×109 t。大港油田页岩油采用水平井开发,但处于初级阶段,且水平段(水平段长1 500.00 m)和裸眼段长,钻遇地层存在大段泥岩、生物灰岩、砾岩、石膏层,并且断层发育,井壁失稳风险较高,采用常规盐水钻井液无法解决页岩油水平井井壁失稳、井眼清洁度低、摩阻高和易卡钻等技术难点[3-4];采用油基钻井液可以解决上述技术难点,但油基钻井液的成本高,且存在环保问题。为此,笔者根据高矿化度抑制、纤维架桥刚柔并济封堵、固液润滑剂协同增效和科学调控流变性的思路,在大港油田现用高性能水基钻井液的基础上,通过优选关键润滑剂和封堵剂,形成了BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液。大港油田36口页岩油水平井使用BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液钻进水平段,水平段井壁稳定,井眼清洁效果好,未发生阻卡事故,均顺利钻至设计井深。

    大港油田南部油区是形成页岩油的有利地区,以该油区孔2段页岩油储层为研究对象,其埋深3 750.00~4 375.00 m,储层岩石岩性为泥页岩、白云岩和致密砂岩[5-6]

    选取目标区块官108-8井孔2段的页岩岩样,分析全岩矿物组成及黏土矿物组成,分析结果表明:页岩全岩矿物组分复杂,主要有石英、长石、黏土、方解石和白云石等,石英含量最高(平均59%),其次为黏土矿物(平均23%),白云石、方解石、长石和黄铁矿的含量较少;黏土矿物中,以伊利石(平均含量52%)和伊蒙混层(平均含量25%)为主,其次是绿泥石(平均含量23%),脆性矿物平均含量高达77%,属于硬脆性泥页岩[7]。钻进时易出现掉块、井壁失稳等问题。

    将上述目标区块岩样进行扫描电镜分析,结果见图1

    图  1  页岩地层岩样扫描电镜分析结果
    Figure  1.  SEM images of rock samples from shale formation

    图1可以看出:页岩发育大量微裂缝及蜂窝状小孔洞,孔隙直径主要在0.025~0.680 μm;微裂缝宽度不一,主要在0.17~1.50 μm,且具有延伸长度长、弯曲程度高等特点。

    采用亚甲基蓝法测定目标区块页岩的阳离子交换容量,结果见表1。由表1可知:页岩阳离子交换容量为10~25 mmol/kg,平均为17 mmol/kg;膨润土当量为14.29~35.71 g/kg,平均为24.29 g/kg;阳离子交换容量较小,岩样黏土带电量不高,属于低膨胀页岩。

    表  1  页岩阳离子交换容量分析结果
    Table  1.  Results of cation exchange capacity (CEC) in shale
    岩样
    编号
    亚甲基蓝溶液
    消耗量/mL
    阳离子交换容量/
    (mmol·kg–1
    膨润土当量/
    (g·kg–1
    12.52535.71
    21.51521.43
    31.01014.29
    41.51521.43
    52.02028.57
    下载: 导出CSV 
    | 显示表格

    大港油田页岩油储层发育“小而多”的微小孔隙与裂缝,孔隙度大都低于4%,渗透率大都小于0.1 mD。根据储层储渗性能划分标准[8],目标区块储层属于特低孔特低渗储层。孔隙半径38~524 nm,平均114 nm,喉道半径29~359 nm,平均89 nm,这些孔缝为页岩油赋存提供了重要的储集空间,但也给实现钻井液高效封堵、提高钻井液孔缝均封的广适性提出了更高的要求。

    目前,国内外多采用水平井开发页岩油气藏,所用钻井液以油基钻井液为主[9-10]。为降低钻井液费用和满足环保要求,大港油田页岩油水平井采用水基钻井液,但存在以下技术难点:

    1)页岩油水平井的裸眼段和水平段长,且页岩地层层理和微裂缝发育[11],水平段和裸眼段页岩地层长时间浸泡在钻井液中,易失稳垮塌。

    2)岩屑极易在大斜度井段和水平井段形成岩屑床,井眼清洁难度大。

    3)水平段长,钻具与地层的接触面积大,易发生托压。同时,钻进过程中钻井液固相含量逐步升高,会导致摩阻、扭矩急剧增大。

    1)基于大港油田页岩地层的特点,结合水平井安全钻井对钻井液的要求,综合考虑环保、成本等因素,选择强抑制强封堵高性能水基钻井液。

    2)根据纤维架桥、刚柔并济的封堵思路,优化封堵材料粒度级配,选择合适的纤维材料,形成广适性封堵体系,提高滤饼的致密承压封堵性,增强井壁的稳定性。

    3)优化钻井液流变性,提高动塑比和低剪切速率下的黏度,增强钻井液携岩性能,提高井眼净化效果。同时提高钻井液的润滑性能,以降低摩阻扭矩,实现优快钻井。

    在BH-KSM和BH-WEI强抑制高性能水基钻井液[12-13]的基础上,根据页岩油水平井对钻井液性能的要求,初步形成了BH-KSM-Shale和BH-WEI-Shale水基钻井液的基础配方。

    BH-KSM-Shale水基钻井液的基础配方(简称为配方1):4.0%膨润土浆+7.0%KCl+0.3%包被剂BZ-BYJ-I+0.2%流性调节剂BZ-HXC+1.5%降滤失剂BZ-KLS-I+3.0%防塌封堵剂BZ-YFT+2.0%树脂SN+1.0%降滤失剂SD-201。

    BH-WEI-Shale水基钻井液的基础配方(简称为配方2):清水+2.0%提切剂BZ-TQJ+30.0%BZ-YJZ-I+0.5%包被剂BZ-BYJ-I+0.1%流性调节剂BZ-HXC+2.0%降滤失剂BZ-KLS-I+3.0%防塌封堵剂BZ-YFT+2.0%抑制润滑剂BZ-YRH。

    液体润滑剂BZ-BL分子中的极性基团可吸附在地层和钻具表面,产生润滑作用。石墨表面和层间可吸附水分子,增大了石墨层间的滑动距离,可以增强石墨的润滑作用。将2.0%液体润滑剂BZ-BL与1.0%石墨复配后分别加入BH-KSM-Shale和BH-WEI-Shale水基钻井液中,利用滤附系数测定仪测试其滤饼的摩阻系数,结果见图2

    图  2  页岩油水平井水基钻井液润滑性评价结果
    Figure  2.  Lubricities of the water-based drilling fluids used in horizontal shale oil wells

    图2可知,BH-KSM-Shale和BH-WEI-Shale水基钻井液加入由液体润滑剂BZ-BL与石墨复配的润滑剂后,滤饼摩阻系数大幅降低,降低率超过40%,说明液体润滑剂BZ-BL与石墨复配起到了协同增效作用,提高了钻井液的润滑性。因此,将2.0%液体润滑剂BZ-BL与1.0%石墨复配作为润滑剂。

    大港油田页岩油储层页岩基质纳微米级孔隙和微裂缝发育,毛细管力和微裂缝弱面等易造成井壁失稳。为强化对基质孔隙和微裂缝的封堵,选择可变形树脂类防塌封堵剂BZ-FFT、刚性复合碳酸钙(325目、800目和1250目碳酸钙按1∶1∶1比例复配)和纤维类材料BZ-DFT作为封堵剂。在纤维类材料BZ-DFT架桥作用下,可变形树脂类防塌封堵剂BZ-FFT、刚性复合碳酸钙可封堵不同尺寸的孔隙和裂缝。利用OFITE渗透性封堵仪评价BH-KSM-Shale和BH-WEI-Shale水基钻井液加入封堵剂后的封堵性能,结果见表2

    表  2  页岩油水平井水基钻井液封堵性能评价结果
    Table  2.  Plugging results of the water-based drilling fluids used in horizontal shale oil wells
    配方砂盘渗
    透率/
    mD
    滤失量/mL封堵滤
    失量/
    mL
    静态滤
    失速率/
    (mL·min−1/2)
    1 min5 min7.5 min15 min25 min30 min
    34000.84.26.08.211.011.823.64.24
    20 0001.65.86.89.011.412.525.04.16
    44000.74.06.08.010.811.422.83.94
    20 0001.65.56.69.011.212.124.24.02
    54000.42.84.05.87.07.815.62.77
    20 0000.63.24.46.07.88.016.02.63
    64000.94.36.18.010.811.623.24.02
    20 0001.75.57.19.211.512.825.64.16
    74000.63.85.87.710.511.523.04.16
    20 0001.55.46.08.811.011.923.84.31
    84000.52.84.25.67.28.016.02.77
    20 0001.03.44.46.27.98.316.62.85
    注: 配方3为 配方1+3%BZ-FFT-I+3%BZ-DFT; 配方4为配方1+3%BZ-FFT-I+4%复合碳酸钙;配方5为配方1+3%BZ-FFT-I+2%BZ-DFT+4%复合碳酸钙;配方6为配方2+3%BZ-FFT-I+3%BZ-DFT;配方7为配方2+3%BZ-FFT-I+4%复合碳酸钙;配方8为配方2+3%BZ-FFT-I+2%BZ-DFT+4%复合碳酸钙。试验条件6.9 MPa,130 ℃。
    下载: 导出CSV 
    | 显示表格

    表2可以看出,BH-KSM-Shale和BH-WEI-Shale水基钻井液加入由3%防塌封堵剂BZ-FFT-I、2%封堵剂BZ-DFT和4%复合碳酸钙复配的封堵剂后,其高温高压渗透性封堵滤失量约为16 mL,封堵效果达到优良,表明BH-KSM-Shale和BH-WEI-Shale水基钻井液加入封堵剂能有效封堵不同孔隙和裂缝,降低钻井液及其滤液的渗透。因此,确定将3%防塌封堵剂BZ-FFT-I、2%封堵剂BZ-DFT和4%复合碳酸钙复配作为封堵剂。

    在以上试验基础上,最终形成BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液。

    BH-KSM-Shale强抑制强封堵高性能水基钻井液的配方为4.0%膨润土浆+7.0%KCl+0.3%包被剂BZ-BYJ-I+0.2%流性调节剂BZ-HXC+1.5%降滤失剂BZ-KLS-I+3.0%防塌封堵剂BZ-YFT+3.0%BZ-FFT-I+2.0%BZ-DFT+4.0%复合碳酸钙+2.0%树脂SN+1.0%降滤失剂SD-201+2.0%BZ-BL+1.0%石墨。

    BH-WEI-Shale强抑制强封堵高性能水基钻井液的配方为清水+2.0%提切剂BZ-TQJ+30.0%BZ-YJZ-I+0.5%包被剂BZ-BYJ-I+0.1%流性调节剂BZ-HXC+2.0%降滤失剂BZ-KLS-I+3.0%防塌封堵剂BZ-YFT+3.0%BZ-FFT-I+2.0%BZ-DFT+4.0%复合碳酸钙+2.0%抑制润滑剂BZ-YRH+2.0%BZ-BL+1.0%石墨。

    大港油田页岩油储层最高温度为130 ℃,因此,测定BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液在130 ℃下老化前后的基本性能,结果见表3

    表  3  页岩油水平井水基钻井液的基本性能
    Table  3.  Basic properties of the water-based drilling fluids used in horizontal shale oil wells
    钻井液测试条件密度/
    (kg·L–1
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    动塑比静切力/
    Pa
    API滤失量/
    mL
    pH值高温高压
    滤失量/mL
    BH-KSM-Shale老化前1.453713.50.363.5/8.02.08.5
    老化后1.453514.50.413.0/5.51.68.07.0
    BH-WEI-Shale老化前1.453916.00.414.0/9.02.29.0
    老化后1.454315.00.352.0/3.01.88.58.8
     注:老化条件在130 ℃下,滚动16 h,下同。
    下载: 导出CSV 
    | 显示表格

    表3可以看出:BH-KSM-Shale和BH-WEI-Shale水基钻井液的抗温能力均达到130 ℃,API滤失量均低于2.5 mL,高温高压滤失量均低于10.0 mL,具有良好的高温稳定性;2种钻井液老化前后的动塑比均大于0.35,较高的动塑比有利于水平段携岩。

    页岩地层的钻屑水化后容易破碎,造成钻井液中低密度固相累积,对水平井钻井的影响较大。用沧东官108-8井孔2段页岩地层岩心研磨后过100目筛的岩心粉模拟低密度固相,在BH-KSM-Shale和BH-WEI-Shale水基钻井液中加入10%岩心粉,测定其老化前后的性能,结果见表4

    表  4  岩油水平井水基钻井液抗岩屑污染试验结果
    Table  4.  Resistance of the water-based drilling fluids used in horizontal shale oil wells to cutting pollution
    钻井液测试
    条件
    塑性
    黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/
    Pa
    API滤
    失量/
    mL
    pH值高温
    高压滤
    失量/
    mL
    BH-KSM-Shale老化前2523.55.5/12.02.28.5
    老化后3524.54.0/7.52.08.08.4
    BH-WEI-Shale老化前2726.06.0/13.03.09.0
    老化后3322.05.0/7.51.88.58.0
    下载: 导出CSV 
    | 显示表格

    表4可以看出,BH-KSM-Shale和BH-WEI-Shale水基钻井液加入10%岩心粉,经高温老化后,除黏度和切力稍有升高外,其他性能参数变化较小,表明BH-KSM-Shale和BH-WEI-Shale水基钻井液具有较高的抗岩屑污染能力。

    将钻井液膨胀试验用膨润土在41.4 MPa压力下压制30 min,制成人造岩心,测定其在BH-KSM-Shale和BH-WEI-Shale水基钻井液中浸泡8 h的膨胀量,计算其膨胀率,结果见图3

    图  3  人造岩心膨胀率曲线
    Figure  3.  Expansion rate curves of artificial cores

    图3可以看出,人造岩心在BH-KSM-Shale和BH-WEI-Shale水基钻井液中浸泡8 h的膨胀率与清水相比显著降低,降低率均达80%以上,说明BH-KSM-Shale和BH-WEI-Shale水基钻井液具有较强的抑制性。

    选用目标区块6/8目的页岩岩屑,测定其在BH-KSM-Shale和BH-WEI-Shale水基钻井液中的滚动回收率,测试条件为130 ℃、滚动16 h。结果为:岩屑在BH-KSM-Shale和BH-WEI-Shale水基钻井液中的一次滚动回收率分别为98.84%、99.04%,二次滚动回收率分别为95.33%、96.46%,两次滚动回收率均在95%以上,说明BH-KSM-Shale和BH-WEI-Shale水基钻井液具有较好的抑制防塌能力。

    根据压力传递速率可以评价钻井液的封堵性能[14]。利用SHM-3型高温高压井壁稳定性模拟装置,采用GD108-8井孔二段页岩油储层岩心进行2种强抑制强封堵高性能水基钻井液的压力传递试验,结果见图4。试验时岩心上游压力保持2.0 MPa,下游初始压力1.0 MPa(标准盐水)。

    图  4  页岩油水平井水基钻井液的压力传递试验曲线
    Figure  4.  Pressure transfer curves of the water-based drilling fluids used in horizontal shale oil wells

    图4可看出,页岩油储层岩心与BH-KSM-Shale和BH-WEI-Shale水基钻井液相互作用后,下游压力均约在5 000 s稳定;而页岩油储层岩心未与BH-KSM-Shale和BH-WEI-Shale水基钻井液相互作用时,下游压力很快与上游压力相同。这表明,BH-KSM-Shale和BH-WEI-Shale水基钻井液能降低页岩渗透率,改善页岩膜效率,阻缓压力传递,实现封堵,提高井壁稳定性。

    截至2020年3月,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液在GD1701H井[15]、GY2-1-2H井和QY2H井等36口水平井进行了应用,应用井平均完钻井深4 525.00 m(最深5 806.00 m),水平段平均长1 235.00 m(水平段最长2 081.58 m),平均井径扩大率6.8%,最短钻井周期与未应用BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液的首口水平井相比缩短47%,未发生与钻井液有关的井下故障。钻井过程中,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液的动塑比控制在0.45以上,有利于井眼清洁;润滑系数均小于0.08,说明其润滑性能良好;所有井的封堵滤失量均低于15 mL,说明其封堵性能较好。表5为部分应用井的钻井技术指标。下面以GY1-1-9H井为例介绍强抑制强封堵高性能水基钻井液的应用情况。

    表  5  部分应用井的钻井技术指标
    Table  5.  Drilling technical indicators in partial wells applied the water-based drilling fluids
    序号井号完钻井深/m水平段长/m钻井液井径扩大率,%钻井周期/d机械钻速/(m·h−1
    1GD1701H5 465.001 984.00BH-KSM-shale55.2113.26
    2GY1-1-4H4 650.001 108.93BH-KSM-shale92.4613.36
    3GY2-1-1H4 508.00 9 76.68BH-KSM-shale6.7456.2510.20
    4GY1-5-1H5 293.001 934.00BH-KSM-shale8.3170.3211.48
    5GY7-3-5H4 502.001 675.00BH-WEI-shale6.3019.8921.96
    6GY2-1-4H4 526.001 403.00BH-KSM-shale7.5525.0016.34
    7GY10-1-1H4 036.001 799.00BH-KSM-shale6.2134.0015.90
    8GY1-1-3H4 888.001 402.00BH-KSM-shale30.9612.19
    9GY1-1-2H5 166.001 750.00BH-KSM-shale7.2242.2113.42
    10GY1-1-9H5 806.001 980.13BH-KSM-shale6.5361.4613.55
    下载: 导出CSV 
    | 显示表格

    GY1-1-9H井是大港油田的一口页岩油生产水平井,一开(0~502.00 m井段)使用膨润土钻井液钻进,二开(502.00~2 962.00 m)使用BH-P0M钻井液钻进。该井三开钻遇的沙一段底部有生物灰岩、油页岩,孔二段有油页岩、大段石膏层,钻进过程中存在井漏、井壁失稳、石膏侵等风险。同时,该井设计井深5 806.00 m,水平段长近2 000.00 m,对钻井液的携岩和润滑性能要求也非常高。因此使用BH-KSM-Shale强抑制强封堵高性能水基钻井液钻进三开井段。

    开始钻进三开井段时,在当量膨润土含量小于30 g/L的膨润土基浆中加入KCl,使KCl含量达到5%~7%,依次加入抗盐抗高温降滤失剂BZ-KLS-I、抑制防塌剂BZ-YFT和抑制润滑剂BZ-BL等,充分循环后,加入强抑制包被剂BZ-BYJ-I、提切剂BZ-HXC,形成BH-KSM-Shale强抑制强封堵高性能水基钻井液,控制其漏斗黏度50~55 s,API滤失量低于4 mL,当量膨润土30~40 g/L。

    钻进期间实时监测KCl和润滑剂的含量,确保KCl含量在5%~7%,润滑剂含量不低于4%,并及时补充强抑制包被剂BZ-BYJ-I,以保证钻井液的抑制性和润滑性达到要求。钻至垂深3 000.00 m以深保证高温高压滤失量不高于10 mL。钻进期间排量不低于30 L/s,水平段每钻进150.00 m短起下一次。钻进及循环期间充分发挥振动筛和除砂器的作用,采用不低于160目的振动筛和不低于200目的除砂器,以清除有害固相。钻进目的层前加入复配碳酸钙,使其含量不低于4%,以改善滤饼质量,保护储层。表6为GY1-1-9H井三开井段钻井液性能。

    表  6  GY1-1-9H井三开井段钻井液性能
    Table  6.  Properties of the drilling fluids in the third spud of Well GY1-1-9H
    井深/m密度/(kg·L–1漏斗黏度/s塑性黏度/(mPa·s)动切力/Pa动塑比静切力/PaAPI滤失量/mL高温高压滤失量/mL摩阻系数
    3 019.001.37413012.00.402.0/4.04.28.00.06
    3 769.001.48504217.00.402.5/5.03.87.20.08
    4 201.001.49573114.50.473.0/6.04.06.80.05
    4 623.001.51603115.00.483.5/6.03.67.40.06
    4 979.001.57644021.50.543.5/6.03.47.00.07
    5 472.001.59704825.00.524.5/6.53.26.60.08
    5 617.001.59654623.00.504.0/7.03.86.20.06
    5 806.001.59665023.50.475.0/7.53.67.00.06
    下载: 导出CSV 
    | 显示表格

    GY1-1-9H井三开井段使用BH-KSM-Shale钻井液,并与短起下钻等工程技术措施配合,确保了井眼清洁,降低了摩阻,保证了井壁稳定。该井三开井段摩阻系数平均不超过0.07,钻进过程中未出现阻卡托压现象,井径扩大率仅为6.53%。该井三开未发生井下故障,顺利钻至井深5 806.00。

    1)通过优选封堵剂、润滑剂等关键处理剂,形成了BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液,其动塑比均在0.35以上、滤饼摩阻系数比常规水基钻井液降低40%以上、API滤失量低于16 mL,能满足硬脆性页岩地层水平井安全钻井对钻井液的要求。

    2)采用抑制水化、致密封堵、密度支撑三元协同的方法保持页岩油水平井井壁稳定,按照纤维架桥、刚柔并济的封堵思路,优选封堵剂,封堵不同尺寸的孔隙和微裂缝。

    3)现场应用表明,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液能克服大港油田页岩油水平井钻井技术难点,为大港油田页岩油水平井钻井提供技术支持。

  • 图  1   控压放水工艺流程

    Figure  1.   Pressure-controlled drainage process

    图  2   拟稳定渗流阶段地层压力变化示意

    Figure  2.   Formation pressure changes in quasi-stable seepage stage

    图  3   循环排污过程示意

    Figure  3.   Cyclic sewage disposal process

    图  4   模拟及修正结果与实测结果对比

    Figure  4.   Comparison of simulation and correction results with measured results

    图  5   克深A井放水速率变化曲线

    Figure  5.   Variation curve of water drainage rates in Well Keshen A

    图  6   不同渗透率条件下关井时间分别为1, 3和5 h时的地层压力

    Figure  6.   Formation pressure at shut-in time of 1 hr, 3 hrs and 5 hrs under different permeability conditions

    图  7   控压放水过程中套压和放水量的变化曲线

    Figure  7.   Variation curves of casing pressure and displacement during pressure-controlled drainage

    图  8   不同承压能力节流阀单次放水量对比

    Figure  8.   Comparison of single drainage of throttle with different pressure-bearing capacity

    图  9   不同渗透率下地层压力当量密度随放水次数的变化曲线

    Figure  9.   Variation curves of equivalent density of formation pressure with times of water drainage under different permeability conditions

  • [1] 孙谦, 任娜. 塔里木山前构造克深905井盐层控压放水应用及探讨[J/OL]. 中国科技期刊数据库: 工业A, 2017: 304. (2017-01-02) [2020-12-20]. http://www.cqvip.com/QK/71899X/201701/epub1000000680083.html.

    SUN Qian, REN Na. Application and discussion of stratum pressure-controlled drainage in Well Keshen 905, Tarim Piedmont structure[J/OL]. China Science and Technology Journal Database: Industry A, 2017: 304. (2017-01-02) [2020-12-20]. http://www.cqvip.com/QK/71899X/201701/epub1000000680083.html.

    [2] 田径. 钻遇盐膏层高压盐水的井控技术[D]. 成都: 西南石油大学, 2012.

    TIAN Jing. Drilling well control technology of high pressure brine in salt-paste layer[D]. Chengdu: Southwest Petroleum University, 2012.

    [3] 程天辉,何选蓬,王燕新,等. 复合盐层控压放水技术在克深905井的应用[J]. 钻采工艺,2017,40(4):108–109. doi: 10.3969/J.ISSN.1006-768X.2017.04.35

    CHENG Tianhui, HE Xuanpeng, WANG Yanxin, et al. Application of compound stratum pressure-controlled drainage technology in Well Kesheng 905[J]. Drilling & Production Technology, 2017, 40(4): 108–109. doi: 10.3969/J.ISSN.1006-768X.2017.04.35

    [4] 梁红军,李军,李卫东,等. 高压盐水层控压放水室内实验研究[J]. 钻采工艺,2019,42(2):21–23.

    LIANG Hongjun, LI Jun, LI Weidong, et al. Experimental study on controlled pressure discharge of high pressure brine out of formations[J]. Drilling & Production Technology, 2019, 42(2): 21–23.

    [5] 张朝举,李军,杨宏伟,等. 高压盐水层控压放水模拟计算研究[J]. 钻采工艺,2021,44(3):1–4.

    ZHANG Chaoju, LI Jun, YANG Hongwei, et al. Simulation computation of pressure-controlled water drainage in high-pressure brine layer[J]. Drilling & Production Technology, 2021, 44(3): 1–4.

    [6] 宋付权,刘慈群. 低渗透多孔介质中新型渗流模型[J]. 新疆石油地质,2001,22(1):56–58.

    SONG Fuquan, LIU Ciqun. A new percolation model used for low permeability porous medium[J]. Xinjiang Petroleum Geology, 2001, 22(1): 56–58.

    [7] 段慕白,李皋,孟英峰,等. 气体钻井地层动态出水量预测计算模型[J]. 天然气工业,2016,36(6):66–71.

    DUAN Mubai, LI Gao, MENG Yingfeng, et al. A prediction and calculation model for dynamic formation water yield in gas drilling[J]. Natural Gas Industry, 2016, 36(6): 66–71.

    [8] 李祖光, 蒋宏伟, 翟应虎, 等. 气体钻井地层出水量理论模型[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(增刊1): 8-10.

    LI Zuguang, JIANG Hongwei, ZHAI Yinghu, et al. Water output model in gas drilling[J]. Journal of Liaoning Technical Univer-sity(Natural Science), 2009, 28(supplement1): 8-10.

    [9] 吴建发,郭建春,赵金洲,等. 有水气井井底出水量计算方法研究[J]. 西南石油大学学报,2003,25(6):27–30.

    WU Jianfa, GUO Jianchun, ZHAO Jinzhou, et al. Study on calculation of water inflow rate of bottom hole of gas well with water[J]. Journal of Southwest Petroleum Institute, 2003, 25(6): 27–30.

    [10] 金业权,李成,吴谦. 深水钻井井涌余量计算方法及压井方法选择[J]. 天然气工业,2016,36(7):68–73.

    JIN Yequan, LI Cheng, WU Qian. Methodology for kick tolerance calculation and well killing in deepwater drilling[J]. Natural Gas Industry, 2016, 36(7): 68–73.

    [11] 李黔,杨先伦,伍贤柱. 压井过程中井底压力的控制方法[J]. 天然气工业,2013,33(9):87–90. doi: 10.3787/j.issn.1000-0976.2013.09.015

    LI Qian, YANG Xianlun, WU Xianzhu. A method of controlling the bottomhole pressures in well killing[J]. Natural Gas Industry, 2013, 33(9): 87–90. doi: 10.3787/j.issn.1000-0976.2013.09.015

    [12] 李晓平. 利用气井压力恢复资料求产能方程和排泄半径[J]. 断块油气田,2001,8(1):24–26,67.

    LI Xiaoping. Determining deliverability equation and drainage radius using pressure buildup data of gas well[J]. Fault-Block Oil & Gas Field, 2001, 8(1): 24–26,67.

    [13] 付晓飞,贾茹,王海学,等. 断层-盖层封闭性定量评价:以塔里木盆地库车坳陷大北—克拉苏构造带为例[J]. 石油勘探与开发,2015,42(3):300–309.

    FU Xiaofei, JIA Ru, WANG Haixue, et al. Quantitative evaluation of fault-caprock sealing capacity: a case from Dabei-Kelasu Structural Belt in Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 300–309.

    [14] 张锦荣,陈安明,周玉仓. 塔里木深井盐膏层钻井技术[J]. 石油钻探技术,2003,31(6):25–27.

    ZHANG Jinrong, CHEN Anming, ZHOU Yucang. The drilling technology for penetrating carbonate formation in Tarim deep wells[J]. Petroleum Drilling Techniques, 2003, 31(6): 25–27.

    [15] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28.

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.

    [16] 许安明,吴超,尚江伟,等. 面积深度法在库车坳陷北部盐下构造变形研究中的应用[J]. 天然气工业,2015,35(6):37–42.

    XU Anming, WU Chao, SHANG Jiangwei, et al. Application of area-depth method in studies on the deformation of subsalt structures in the northern Kuqa Depression[J]. Natural Gas Industry, 2015, 35(6): 37–42.

    [17] 刘伟,李牧,何思龙,等. 库车山前超高压盐水层控压固井实践与认识[J]. 钻采工艺,2020,43(5):31–33.

    LIU Wei,LI Mu,HE Silong,et al. Practice and understanding of managed pressure cementing for ultra-high pressure brine formation in the Kuche Piedmont[J]. Drilling & Production Technology, 2020, 43(5): 31–33.

    [18] 江同文,孙雄伟. 中国深层天然气开发现状及技术发展趋势[J]. 石油钻采工艺,2020,42(5):610–621.

    JIANG Tongwen,SUN Xiongwei. Development status and technology development trend of deep natural gas in China [J]. Oil Drilling & Production Technology, 2020, 42(5): 610–621.

    [19] 罗威,倪玲梅. 致密砂岩有效储层形成演化的主控因素:以库车坳陷巴什基奇克组砂岩储层为例[J]. 断块油气田,2020,27(1):7–12.

    LUO Wei,NI Lingmei. Main controlling factors of formation and evolution of effective reservoir in tight sandstone: taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an exam-ple[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 7–12.

    [20] 王学龙,何选蓬,刘先锋,等. 塔里木克深9气田复杂超深井钻井关键技术[J]. 石油钻探技术,2020,48(1):15–20.

    WANG Xuelong, HE Xuanpeng, LIU Xianfeng, et al. Key drilling technologies for complex ultra-deep wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15–20.

    [21] 王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33. doi: 10.11911/syztjs.2020007

    WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33. doi: 10.11911/syztjs.2020007

  • 期刊类型引用(6)

    1. 宋舜尧,周博宇,刘晓慧,杨飞,马忠梅,王海柱. 页岩油储层环保型高性能水基钻井液体系研究及应用. 化学研究与应用. 2024(08): 1767-1775 . 百度学术
    2. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    3. 秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 . 本站查看
    4. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    5. 李明辉,王凯,王清臣. 水基钻井液固相分布与控制——以苏里格东部气井为例. 钻井液与完井液. 2023(05): 611-616 . 百度学术
    6. 迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 . 本站查看

    其他类型引用(2)

图(9)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  166
  • PDF下载量:  38
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2021-08-30
  • 网络出版日期:  2022-02-09
  • 刊出日期:  2022-04-05

目录

/

返回文章
返回