脉动式扭转冲击钻井工具工作特性分析与测试

汪伟, 柳贡慧, 李军, 查春青, 连威, 夏铭莉

汪伟,柳贡慧,李军,等. 脉动式扭转冲击钻井工具工作特性分析与测试[J]. 石油钻探技术,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
引用本文: 汪伟,柳贡慧,李军,等. 脉动式扭转冲击钻井工具工作特性分析与测试[J]. 石油钻探技术,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a thepulsating torsional impact drilling tool [J]. Petroleum Drilling Techniques,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
Citation: WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a thepulsating torsional impact drilling tool [J]. Petroleum Drilling Techniques,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101

脉动式扭转冲击钻井工具工作特性分析与测试

基金项目: 国家科技重大专项“复合冲击破岩技术研究及工具研制”(编号:2016ZX05021-003)和中国石油天然气集团有限公司–中国石油大学(北京)战略合作科技专项“准噶尔盆地玛湖中下组合和吉木萨尔陆相页岩油高效勘探开发理论及关键技术研究”(编号:ZLZX2020-01)联合资助
详细信息
    作者简介:

    汪伟(1992—),男,安徽桐城人,2014年毕业于中国石油大学(北京)石油工程专业,2017年获中国石油大学(北京)油气井工程专业硕士学位,在读博士研究生,主要从事井下提速工具设计研究。E-mail: cupwangwei53@163.com。

  • 中图分类号: TE921+.2

Analysis and Testing of the Working Characteristics of a Pulsating Torsional Impact Drilling Tool

  • 摘要:

    为抑制PDC钻头钻进硬地层时的粘滑振动,设计了一种可以为PDC钻头提供周向冲击载荷的脉动式扭转冲击钻井工具,并在介绍其结构设计和分析其工作原理的基础上,建立了计算其周向扭矩、直井工况下冲击功的数学模型,通过算例分析了其工作特性。分析结果表明:脉动式扭转冲击钻井工具的周向扭矩随排量增大而增大,随节流喷嘴直径增大而减小;在直井中的冲击功随钻柱扭矩和扭转角度增加而增大,随钻压增大而减小。脉动式扭转冲击钻井工具样机性能室内测试结果表明,该钻井工具能实现高频扭转冲击,且其工作频率、周向腔体压差和周向扭矩均随排量增大而增大。研究和测试结果表明,脉动式扭转冲击钻井工具的结构设计合理,能够为PDC钻头提供周期性扭转冲击载荷,抑制PDC钻头的粘滑振动。

    Abstract:

    A pulsating torsional impact drilling tool was designed to provide a polycrystalline diamond compact (PDC) bit with a circumferential impact load to suppress the stick-slip vibration of the bit when it drills into hard formations. First, the structural design of the drilling tool was introduced, and its working principle was analyzed. Then, on this basis, mathematical models were established for calculating its impact energy in vertical wells and circumferential torque. Finally, the working characteristics of the drilling tool were analyzed. The analysis results showed that the circumferential torque of the pulsating torsional impact drilling tool increased with the increase in flow rate and decreased with the increase in the diameter of the throttle nozzle. Its impact energy in vertical wells became higher with the increase in the torque and rotation of the drill string; however it declined as the weight on bit (WOB) increased. The performance of the pulsating torsional impact drilling tool prototype was explored through laboratory tests. The test results were positive and indicated that the drilling tool could achieve high-frequency torsional impact, and its operating frequency, circumferential cavity pressure difference, and circumferential torque were all enhanced with the increase in flow rate. The research and test results demonstrate that the pulsating torsional impact drilling tool has an acceptable structural design, which can provide periodic torsional impact loads for PDC bits and suppress the stick-slip vibration.

  • 吉兰泰油田位于河套盆地临河坳陷西南部[1-2],吉华1区块为潜山区块,是裂缝性块状底水油藏,是该油田主力开发区块之一。该区块地质层系自上而下依次为新生界第四系、中生界白垩系和太古界,上部地层以上部和中部棕红色泥岩为主,与灰色细砂岩互层,胶结疏松,易发生垮塌、井漏等井下故障;目的层为太古界,岩性为片麻岩,高角度裂缝比较发育,可钻性差。为有效贯穿更多裂缝,降低水锥速度,增大油气层裸露面积,提高油井开发效率,吉华1区块采用了水平井开发。

    吉华1区块潜山顶面距离地表200~600 m。而吉兰泰油田已完钻井的最大造斜率为4.8°/30m,初步估算水平井的造斜率为5.0°/30m,折算A靶点距离地表埋深应在400 m左右。考虑一定的避水高度,根据钻井工艺要求,初步确定吉华1区块水平井水平段长600~1 000 m。

    截至目前,吉兰泰油田还未钻过以太古界片麻岩地层为目的层的浅层水平井。为此,针对吉华1区块超浅层水平井钻井中,由于上部白垩系地层松软,下部片麻岩地层硬度高、可钻性差,而导致的造斜率难以保证、钻井周期长、硬地层水平井眼延伸、后期固井套管下入困难等问题进行了技术攻关,形成了吉兰泰油田吉华1区块超浅层水平井钻井关键技术,取得了较好的应用效果,为该区块后续部署更长水平段的水平井提供了技术参考、积累了经验[3-4]

    1)地层可钻性差。吉华1区块太古界岩性主要为片麻岩,含石英岩夹层。统计得知,在该地层钻直井时,平均机械钻速为2.01 m/h。通过岩石力学试验和测井数据可知,太古界地层均质性较差,可钻性6~8级。另因地层研磨性强,纯度、成分和胶结强度等存在差异,不同井的岩石单轴抗压强度波动较大,硬度不同。但该地层内摩擦角变化小,研磨性变化不大。

    2)地层松软,定向困难。吉华1区块潜山埋藏浅,白垩系地层胶结疏松,成岩性差,可钻性1~3级,造斜率难以保证,定向困难。

    3)垂深浅、水垂比大,水平段延伸困难。吉华1区块潜山最浅埋深200 m,以水平段长500 m计算,水平井的水垂比超过了2,钻具摩阻扭矩大,钻压难以有效传递,滑动钻进困难。

    4)对钻井液性能要求高。吉华1区块浅层大斜度井,存在稳斜井段长、易形成岩屑床、携岩困难、易出现托压现象等问题。同时,储层钻遇率高,储层保护要求高。且该区块为环境敏感地区,对环保要求更为严格。

    5)套管下入难度大。水垂比高,下套管时下行阻力大,仅靠自重无法下至设计位置,需加压才能向下滑动,但常规钻机大钩加压能力有限,同时加压也可能导致套管柱发生屈曲。

    针对上述钻井技术难点,从井身结构优化、钻具组合优化、钻井液优选,以及钻井提速提效、套管安全下入等方面进行了研究,形成了吉兰泰油田吉华1区块超浅层水平井钻井关键技术。

    设计水平井的井身结构时,除了考虑地层压力、必封点等因素外,还应考虑钻井设备负荷和井下风险。在保证实现地质目标的前提下,尽可能缩短裸眼段长度、降低摩阻扭矩、缩短裸眼浸泡时间和减轻钻机负荷,并降低井壁垮塌风险。

    根据吉华1区块的地质条件和地层三压力剖面,提出了3种井身结构:

    井身结构1:1)下入30 m长的导管,封流沙层;2)一开采用ϕ311.1 mm钻头钻入太古界3~5 m,下入ϕ244.5 mm套管;3)二开采用ϕ215.9 mm钻头专打储层,下入ϕ139.7 mm套管。

    井身结构2:1)减小钻头尺寸,保障造斜率,下入30 m长的导管,封流沙层;2)一开采用241.3 mm钻头钻入太古界3~5 m,下入ϕ200.0 mm套管;3)二开采用ϕ171.3 mm钻头专打储层,下入ϕ139.7 mm套管。

    井身结构3:1)一开采用ϕ311.1 mm钻头钻至井深201 m,下入ϕ244.5 mm套管;2二开采用ϕ215.9 mm钻头钻至完钻井深,下入ϕ139.7 mm套管完钻。

    从地质情况、后期完井情况等方面考虑,选用“直—增—稳—增—稳”五段制井身剖面,造斜段采用6°/30m左右造斜率增斜至60°,稳斜20~30 m,增斜段采用(4°~6°)/30m造斜率增斜至A靶和B靶连线井斜角度。该剖面具有以下优点:1)在白垩系地层完成造斜段施工,增斜段以较小的狗腿度增斜至设计井斜,有效降低潜山片麻岩地层定向施工难度;2)有效缩短潜山片麻岩地层定向段长度,提高机械钻速,缩短钻井周期,降低钻井施工难度。因此,选用井身结构1。

    1)一开造斜钻具组合优化。主要指一开井段的螺杆优选。通过在吉华1平1井使用牙轮钻头+1.5°螺杆钻具发现,白垩系泥岩起步造斜率较低,导致后期对造斜率要求高的情况。在吉华1平7井试验了牙轮钻头+1.75°螺杆钻具,满足了造斜率5.7°/30m的要求。之后,吉华1平11井和吉华1平13井根据造斜率直接选用了1.75°螺杆钻具+PDC钻头进行造斜。

    2)二开钻具组合优化。主要指二开井段的钻具组合优化。主体采用倒装钻具组合,在近钻头加放2柱加重钻杆,提高底部刚性,增强稳斜能力。上部在60°井斜角之前安装加重钻杆,以保证井底钻压充足。因此,推荐二开采用以下钻具组合:ϕ215.9 mm个性化PDC钻头+ϕ172.0 mm1.0°螺杆钻具+浮阀+MWD+ϕ165.1 mm无磁钻铤×1根+ϕ127.0 mm加重钻杆×6根+ϕ127.0 mm钻杆×22根+ϕ172.0 mm水力振荡器+ϕ127.0 mm钻杆×32根+ϕ127.0 mm加重钻杆×24根+ϕ127.0 mm钻杆。

    根据室内试验结果和吉华1区块前期现场应用情况,选用低固相钻井液,其配方为1.5%~2.0%膨润土+0.1%~0.2%纯碱+0.1%~0.3%烧碱+0.1%~0.2%KPAM(钻井液用聚丙烯酰胺钾盐)+0.5%~1.0%双聚胺盐+1.0%~2.0%改性降滤失剂+1.0%~1.5%纳米润滑防塌剂+1.0%~2.0%润滑封堵剂+环保润滑剂。KPAM具有提黏、降滤失、防塌和堵漏等作用,润滑封堵剂增强封堵性能,环保润滑剂在水平井段加强润滑性。该钻井液的主要性能参数:密度为1.05~1.08 kg/L,黏度为40~50 s,初切力为1~4 Pa,终切力为5~10 Pa,API滤失量≤5 mL。该钻井液具有环保性好、储层保护效果好、润滑性好、可减小托压、携岩效率高等特点[5]

    采用软件模拟分析用常规方式下套管时不同摩阻系数下的载荷和下放摩阻,结果见表1

    表  1  常规下套管模拟分析结果
    Table  1.  Simulation results of conventional casing running
    套管外径/mm摩阻系数上提载荷/kN静载荷/kN下放载荷/kN下放摩阻/kN水平段长/m
    管内 管外
    139.70.25 0.40284.7137.831.4106.4800
    0.25 0.45300.617.3120.4
    下载: 导出CSV 
    | 显示表格

    表1可知,ϕ139.7 mm套管下至水平段距离根端800 m处时,下放摩阻120.4 kN,而下放载荷仅为17.3 kN,若下套管遇阻,可供下压的操控余量少,且井斜角、位移较大,存在套管无法下入的风险。

    基于此,提出了下套管方案1(漂浮下套管)和下套管方案2(顶驱下套管),并进行了相应的效果分析[6-8]

    1)漂浮下套管。对不同漂浮段长度进行了模拟计算,发现漂浮段长度为800 m时,最有利于套管安全下入。在此基础上,模拟计算漂浮下套管时不同摩阻系数下的载荷和下放摩阻,结果见表2

    表  2  漂浮下套管模拟分析结果
    Table  2.  Simulation results of float casing running
    套管外径/mm摩阻系数上提载荷/kN静载荷/kN下放载荷/kN下放摩阻/kN水平段长/m
    管内 管外
    139.70.25 0.40191.4115.953.462.5800
    0.25 0.45198.047.768.2
    下载: 导出CSV 
    | 显示表格

    表2可知,ϕ139.7 mm套管下至水平段距离根 端 800 m 处时,下放摩阻在65 kN左右,下放载荷在50 kN左右,井口操作余量较常规下套管方式增加32.7 kN,处理复杂能力有效提高。

    2)顶驱下套管。由模拟计算结果可知,ϕ139.7 mm套管的安全临界载荷约为130 kN,安全系数取1.25,则井口套管可承受104 kN的压力。在水平段长800 m、井斜角小于80°的工况下,常规顶驱重量按100 kN计算,则顶驱下套管时井口有117.3 kN的操作余量,而在相同工况下,漂浮下套管时井口只有50 kN的操作余量,说明顶驱下套管应对风险的能力更强。同时,配合半刚性套管扶正器,可减小下套管阻力。在水平段长度大于1 000 m且井斜角大于80°时,建议采用“漂浮+顶驱”复合下套管方式。

    针对太古界片麻岩强度高、研磨性强的特点以及浅层水平井钻压不足的问题,设计了个性化PDC钻头。具体设计方案为:采用6刀翼、ϕ13.0 mm复合片孕镶切削齿,增加钻头的抗研磨性,提高钻头单趟钻的有效进尺;调小切削齿的后倾角,增强钻头吃入地层的能力;整体刀翼采用弧形设计,便于优化水力参数[9]

    在所钻水平井中,从二开造斜开始,每钻进150~200 m进行一次短起下,以破坏岩屑床,确保井眼清洁通畅。但随着井眼延伸及井斜角增大,仅依靠提高排量无法将岩屑循环出,需要在钻具组合中添加井眼清洁器。井眼清洁器的特点是直接安装在钻杆上,成为钻柱的一部分,随钻柱旋转。在旋转钻进中,井眼清洁器“清洁段”的槽道勺形结构可以起到搅动和破坏岩屑床的作用,通过改善大斜度井、大位移井、水平井井眼底边区域钻井液的流场特性,将岩屑“抛向”高边环空,被钻井液携出,从而减少或消除岩屑堆积形成的岩屑床。理论计算认为,保证井眼不产生岩屑床的最小排量为33 L/s、转盘转速60 r/min。使用井眼清洁器时,建议尽量维持较高的排量和转速,以保证返屑顺利[10]

    为了克服水平井摩阻扭矩大、托压严重的问题,需要在水平稳斜段增加水力振荡器。水力振荡器在水力作用下可产生轴向振动,从而降低钻柱与井眼之间的摩阻,提高钻进中钻压传递的有效性。在定向钻进中改善钻压的传递情况,从而有效解决钻头加压难题,增加水平井的延伸长度,提高钻井效率[11-12]

    截至目前,吉兰泰油田吉华1区块4口超浅层水平井应用了超浅层水平井钻井关键技术,钻井过程中均未出现任何井下故障,现场应用效果良好(见表3)。

    表  3  4口超浅层水平井钻井完井参数
    Table  3.  Drilling and completion parameters of 4 ultra-shallow horizontal wells
    井号井深/m垂深/m最大井斜角/(°)水平位移/m水平段长/m套管下放方式推荐实际施工
    吉华1平1井1 42263678.001 080817顶驱下压顶驱下压
    (压力70~100 kN)
    吉华1平7井1 32664172.381 040783顶驱下压顶驱下压
    (压力40~60 kN)
    吉华1平13井1 49366378.131 132843顶驱下压顶驱下压
    (压力10 kN)
    吉华1平11井1 92263485.821 5911 204 “漂浮+顶驱”复合下套管复合下套管至接箍位置
    (井深797.67 m处)
    下载: 导出CSV 
    | 显示表格

    其中,吉华1平1井首次应用该技术获得成功,属于国内首口潜山片麻岩浅层水平井;吉华1平11井创造了完井井深1 922 m、水平位移1 591 m、水平段长1 204 m等3项行业纪录。

    吉华1平11井采用了二开井身结构,导管封固流沙层,一开从井深107 m造斜,增斜段为107~665 m,井斜角增为75°,二开调整至83°,并在水平段(1 625~1 922 m)使用了水力振荡器+MWD+高速螺杆等的钻具组合。

    吉华1平11井固井下套管时采用了“漂浮+顶驱”复合下套管技术,管串结构为:ϕ139.7 mm旋转式导向浮鞋+ϕ139.7 mm套管1根+ϕ139.7 mm舌板式浮箍+ϕ139.7 mm套管1根+ϕ139.7 mm阀式浮箍+套管柱+ϕ139.7 mm漂浮接箍(位于井深797.67 m处)+ϕ139.7 mm套管柱(井口)。在未采取任何技术措施的情况下,仅用时8 h便顺利将169 根油层套管及全部附件顺利送至预定位置,整个过程中无阻卡及异常情况发生,漂浮工具开孔正常,漂浮接箍滑套顺利推送至浮箍位置。

    1)从井身结构优化、钻具组合优化、钻井液优选,以及钻井提速提效技术、套管安全下入技术等方面进行研究,形成了吉兰泰油田吉华1区块超浅层水平井钻井关键技术。

    2)在吉华1区块超浅层水平井二开造斜段和水平井段集成应用减摩减阻技术、井眼清洁技术及“漂浮+顶驱”复合下套管技术之后,水平段由800 m延伸到了1 200 m,提高了吉兰泰油田吉华1区块的水平井技术,大幅增加了油层接触面积。

    3)建议进一步深化钻井提速提效技术研究,探索试验不同种类个性化钻头及配套提速工具,以实现吉兰泰油田吉华1区块超浅层油藏的高效开发。

  • 图  1   脉动式扭转冲击钻井工具的基本结构

    1.上接头;2.外壳体;3.涡轮动力总成;4.旋转轴;5.周向腔体;6.节流喷嘴;7.钻头座

    Figure  1.   Structure of the pulsating torsional impact drilling tool

    图  2   工作状态示意

    Figure  2.   Working state diagram

    图  3   直井钻柱的变形简化模型

    Figure  3.   Simplified model of drill string deformation invertical wells

    图  4   不同直径节流喷嘴下脉动式扭转冲击钻井工具周向扭矩与排量的关系

    Figure  4.   Variation of circumferential torque with flow rate of pulsating torsional impact drilling tools with different diameters of throttle nozzles

    图  5   钻柱周向扭转5°时不同井深下的扭矩差

    Figure  5.   Torque difference at different well depths with the drill string circumferential rotation of 5 °

    图  6   不同扭转角下冲击功随钻柱扭矩变化的曲线

    Figure  6.   Variation curves of impact energy with drill string torque under different rotation angles

    图  7   不同钻压条件下冲击功随钻柱扭矩变化的曲线

    Figure  7.   Variation curves of impact energy with drill string torque under different WOB

    图  8   扭转冲击工具工具测试装置

    Figure  8.   Test system for torsional impact tool

    图  9   脉动式扭转冲击钻井工具周向腔体内压力的变化曲线

    Figure  9.   Variation curve of circumferential cavity pressure of the pulsating torsional impact drilling tool

    图  10   脉动式扭转冲击钻井工具不同排量下的冲击频率

    Figure  10.   Variation curve of impact frequency of pulsating torsional impact drilling tool with flow rate

    图  11   脉动式扭转冲击钻井工具周向腔体不同排量下的压差

    Figure  11.   Variation curve of circumferential cavity pressure difference of pulsating torsional impact drilling tool with flow rate

    图  12   脉动式扭转冲击钻井工具不同排量下的周向扭矩

    Figure  12.   Variation curve of circumferential torque of pulsating torsional impact drilling tool with flow rate

  • [1] 马凤清. 哈山3井火成岩地层快速钻井技术[J]. 石油钻探技术,2014,42(2):112–116.

    MA Fengqing. Fast drilling technique through igneous rocks in well Hashan 3[J]. Petroleum Drilling Techniques, 2014, 42(2): 112–116.

    [2] 滕学清,狄勤丰,李宁,等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017,45(2):32–39.

    TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and analysis of stick-slip characteristics of drill string in ultra-deep wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32–39.

    [3] 朱全塔,邹宗明,黄兵,等. 导致钻铤失效的井下振动分析及其解决方案[J]. 天然气工业,2016,36(12):80–86. doi: 10.3787/j.issn.1000-0976.2016.12.011

    ZHU Quanta, ZOU Zongming, HUANG Bing, et al. Downhole vibration causing a drill collar failure and solutions[J]. Natural Gas Industry, 2016, 36(12): 80–86. doi: 10.3787/j.issn.1000-0976.2016.12.011

    [4]

    KOVALYSHEN Y. Understanding root cause of stick-slip vibrations in deep drilling with drag bits[J]. International Journal of Non-Linear Mechanics, 2014, 67(12): 331–341.

    [5]

    TUCKER W R, WANG C. On the effective control of torsional vibrations in drilling systems[J]. Journal of Sound and Vibration, 1999, 224(1): 101–122. doi: 10.1006/jsvi.1999.2172

    [6] 王宏伟,韩飞,纪友哲,等. PDC 钻头粘滑控制技术现状及发展趋势[J]. 石油矿场机械,2016,45(7):104–107. doi: 10.3969/j.issn.1001-3482.2016.07.024

    WANG Hongwei, HAN Fei, JI Youzhe, et al. Status and development tendency of stick-slip controlling technology for PDC bit[J]. Oil Field Equipment, 2016, 45(7): 104–107. doi: 10.3969/j.issn.1001-3482.2016.07.024

    [7] 李美求,李嘉文,李宁,等. 周向冲击扭矩作用下PDC钻头的黏滑振动分析[J]. 石油钻采工艺,2018,40(3):287–292.

    LI Meiqiu, LI Jiawen, LI Ning, et al. Analysis on the stick-slip vibration of PDC bit under the effect of circumferential torque impact[J]. Oil Drilling & Production Technology, 2018, 40(3): 287–292.

    [8] 汪伟,柳贡慧,李军,等. 扭转冲击钻井工具的工作特性[J]. 断块油气田,2019,26(3):385–388.

    WANG Wei, LIU Gonghui, LI Jun, et al. Operating characteristics of torsional impact drilling tool[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 385–388.

    [9] 李思琪,毕福庆,李玮,等. 扭转冲击钻井稳态钻进动力学特性及现场应用[J]. 中国石油大学学报(自然科学版),2019,43(2):97–104.

    LI Siqi, BI Fuqing, LI Wei, et al. Dynamic characteristics of steady torsional impact drilling and its field application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 97–104.

    [10] 席岩,夏铭莉,孙念,等. 扭转冲击参数对PDC 钻头单齿破岩效率的影响[J]. 石油钻采工艺,2021,43(5):574–579.

    XI Yan, XIA Mingli, SUN Nian, et al. Influence of torsion impact parameters on single-tooth rock breaking efficiency of PDC bit[J]. Oil Drilling & Production Technology, 2021, 43(5): 574–579.

    [11] 田家林,唐磊,刘强,等. 恒扭提速钻具动力学特性研究与试验分析[J]. 中国海上油气,2022,34(4):203–212.

    TIAN Jialin, TANG Lei, LIU Qiang, et al. Dynamics characteristics study and experiment of constant torque speed-up drilling tool[J]. China Offshore Oil and Gas, 2022, 34(4): 203–212.

    [12] 刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2021,48(5):69–76.

    LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling techniques, 2021, 48(5): 69–76.

    [13] 陈杰,牟小军,李汉兴,等. 旋冲振荡钻井提速工具的研制与应用[J]. 断块油气田,2020,27(3):386–389.

    CHEN Jie,MOU Xiaojun,LI Hanxing,et al. Development and application of rotary-percussive and oscillatory drilling tool[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 386–389.

    [14] 李玮,何选蓬,闫铁,等. 近钻头扭转冲击器破岩机理及应用[J]. 石油钻采工艺,2014,36(5):1–4.

    LI Wei, HE Xuanpeng, YAN Tie, et al. Rock fragmentation mechanism and application of near-bit torsion impacter[J]. Oil Drilling & Production Technology, 2014, 36(5): 1–4.

    [15]

    DEEN A, WEDEL R, NAYAN A, et al. Application of a torsional impact hammer to improve drilling efficiency[R]. SPE 147193, 2011.

    [16] 王四一,赵江鹏,赵建国. 扭力冲击器在煤矿井下硬岩钻进中的应用研究[J]. 煤矿机械,2018,39(10):139–141.

    WANG Siyi, ZHAO Jiangpeng, ZHAO Jianguo. Application research on torque impactor applications on hard rock drilling underground coal mine[J]. Coal Mine Machinery, 2018, 39(10): 139–141.

    [17] 李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术,2017,45(2):10–14.

    LI Ning, ZHOU Xiaojun, ZHOU Bo, et al. Technologies for fast drilling ultra-deep wells in the HLHT block, Tarim oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.

    [18] 张海山,葛俊瑞,杨进,等. 扭力冲击器在海上深部地层的提速效果评价[J]. 断块油气田,2014,21(2):249–251.

    ZHANG Haishan, GE Junrui, YANG Jin, et al. Effect evaluation of torsion impactor for increasing ROP in offshore deep formation[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 249–251.

    [19] 玄令超, 管志川, 刘永旺, 等. 射流式扭转冲击钻井工具: CN103774983A[P]. 2014-05-07.

    XUAN Lingchao, GUAN Zhichuan, LIU Yongwang, et al. Jet torsion percussion drilling tool: CN103774983A[P]. 2014-05-07.

    [20] 祝效华, 石昌帅, 汤历平. 一种用于硬地层的涡轮式扭转冲击钻具: CN201554363U[P]. 2010-08-18.

    ZHU Xiaohua, SHI Changshuai, TANG Liping. A turbine type torsional percussion drill for hard formation: CN201554363U[P]. 2010-08-18.

    [21] 查春青, 柳贡慧, 李军. 扭转冲击钻井提速工具: CN108625769B [P]. 2019-06-25.

    ZHA Chunqing, LIU Gonghui, LI Jun. Speed up tool for torsional percussion drilling: CN108625769B[P]. 2019-06 -25.

    [22] 韩飞,罗淮东,张全立,等. 扭力冲击器设计与仿真分析[J]. 石油机械,2019,47(3):19–23.

    HAN Fei, LUO Huaidong, ZHANG Quanli, et al. Design and simulation analysis of torque thruster[J]. China Petroleum Machinery, 2019, 47(3): 19–23.

    [23] 赵建军,崔晓杰,赵晨熙,等. 高频液力扭力冲击器设计与试验研究[J]. 石油化工应用,2018,37(2):5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002

    ZHAO Jianjun, CUI Xiaojie, ZHAO Chenxi, et al. Design and experimental research on high frequency hydraulic torsional impac-tor[J]. Petrochemical Industry Application, 2018, 37(2): 5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002

  • 期刊类型引用(5)

    1. 王富伟,刘江涛,张斌. 超浅薄层稠油效益开发钻完井关键技术研究与应用. 中国石油和化工标准与质量. 2025(02): 175-177 . 百度学术
    2. 吴若宁,刘云,余海棠,兰晓龙,艾先婷,郭星波,高攀明,邓富元. 超浅层大位移水平井“三低”钻井液技术. 非常规油气. 2024(01): 119-127 . 百度学术
    3. 朱瑞彬,王秀影,张永强,张晶晶,苗胜东,孙涛,秦臻. 巴彦油田深层欠压实地层定向井优快钻井技术. 石油钻采工艺. 2024(02): 147-153 . 百度学术
    4. 张小宁,于文华,叶新群,李令东,明瑞卿,王芹. 加拿大白桦地致密气超长小井眼水平井优快钻井技术. 中国石油勘探. 2022(02): 142-149 . 百度学术
    5. 王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 . 本站查看

    其他类型引用(1)

图(12)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  182
  • PDF下载量:  70
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-04-26
  • 刊出日期:  2022-09-29

目录

/

返回文章
返回