Processing math: 100%

东营凹陷页岩油储层层间干扰及裂缝扩展规律研究

孟勇, 贾庆升, 张潦源, 郑彬涛, 邓旭

孟勇, 贾庆升, 张潦源, 郑彬涛, 邓旭. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094
引用本文: 孟勇, 贾庆升, 张潦源, 郑彬涛, 邓旭. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094
MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, ZHENG Bintao, DENG Xu. Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094
Citation: MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, ZHENG Bintao, DENG Xu. Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094

东营凹陷页岩油储层层间干扰及裂缝扩展规律研究

基金项目: 中国石化科技攻关项目“陆相页岩油强化体积改造缝网压裂技术研究”(编号:P20069-6)部分研究内容
详细信息
    作者简介:

    孟勇(1972—),男,山东章丘人,1994毕业于石油大学(华东)采油工程专业,2006年获中国石油大学(北京)石油与天然气开发工程专业硕士学位,高级工程师,主要从事油气田开发工作。E-mail:mengyong682.slyt@sinopec.com

  • 中图分类号: TE357.1+1

Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag

  • 摘要: 东营凹陷页岩油储量丰富,但储层物性差,纵向含油层系多而薄,多为灰泥岩互层。为了准确描述东营凹陷页岩油储层层间应力干扰机理及水力压裂裂缝的扩展规律,利用非线性有限元法建立了基于渗流–应力–损伤耦合的多薄互层分层压裂模型,模拟分析了不同排量、压裂液黏度及不同上、下隔层厚度下的裂缝扩展形态、规律和诱导应力场,研究了裂缝扩展形态与诱导应力场的关系,并对压裂施工参数进行了优化。模拟结果表明:随着水力裂缝扩展,应力干扰区域越来越大;当排量为9~12 m3/min、黏度为20 mPa∙s时,裂缝尖端诱导应力大,易连通天然裂缝,压裂改造效果明显;上部隔层厚度大于2.50 m、下部隔层厚度大于4.50 m时,极少出现穿层现象。研究结果可为东营凹陷页岩油储层后续的水力压裂施工提供理论支撑。
    Abstract: The Dongying Sag is rich in shale oil reserves, but poor in reservoir physical properties. The sag has many thin oil-bearing layer sequences in the vertical direction, which are mostly interlayered with limestone and mudstone. To precisely describe the law for the interlayer interference and the fracture propagation of the shale oil reservoirs in the Dongying Sag, a separate-layer fracturing model based on seepage-stress-damage coupling was built with the nonlinear finite element method. The morphology and law for fracture propagation, and induced stress field were analyzed considering different flow rates and viscosities of fracturing fluid, and different thicknesses of the upper and lower isolation layers. On this basis, the fracturing parameters were optimized. Simulation results show that the stress interference area grows along with the propagation of hydraulic fractures. When the flow rate is 9–12 mm3/min and the viscosity is 20 mPa∙s, the induced stress at the tips of fractures is high. In this case, natural fractures are prone to be connected and good stimulation results can be achieved. In addition, layer crossing is rare when the thickness of the upper isolation layer is greater than 2.5 m and that of the lower one is greater than 4.5 m. The results can provide theoretical support for the subsequent hydraulic fracturing of shale oil reservoirs in the Dongying Sag.
  • 图  1   裂缝扩展过程中的流体流动示意

    Figure  1.   Fluid flow during fracture propagation

    图  2   Cohesive黏弹性孔压单元的损伤判断依据

    Figure  2.   Failure criterion for the Cohesive viscoelastic pore-pressure elements

    图  3   灰泥互层渗流–应力–损伤耦合分层压裂几何模型和离散模型

    Figure  3.   Geometric model and discrete model of separate-layer fracturing based on seepage-stress-damage coupling for interlayers of limestone and mudstone

    图  4   数值模拟与现场实测的破裂压力

    Figure  4.   Simulated fracturing pressure and field measured fracturing pressure

    图  5   不同压裂液排量下的裂缝形态

    Figure  5.   Fracture morphology under different flow rates of fracturing fluid

    图  6   不同压裂液排量下裂缝宽度和裂缝高度的变化

    Figure  6.   Variation of fracture width and height under different flow rates of fracturing fluid

    图  7   不同压裂液排量下的最小水平主应力

    Figure  7.   Minimum horizontal principal stress under different flow rates of fracturing fluid

    图  8   不同诱导应力的路径

    Figure  8.   Paths of different induced stresses

    图  9   不同压裂液排量下储/隔层中不同路径最小诱导应力沿x轴的变化情况

    Figure  9.   Variations in minimum induced stress along the x axis in different paths of reserve layers/isolation layers under different flow rates of fracturing fluid

    图  10   不同压裂液黏度下的裂缝形态

    Figure  10.   Fracture morphology under different viscosities of fracturing fluid

    图  11   不同压裂液黏度下的最小水平主应力

    Figure  11.   Minimum horizontal principal stress under different viscosities of fracturing fluid

    图  12   不同压裂液黏度下储层、隔层中不同路径最小诱导应力沿x轴的变化情况

    Figure  12.   Variations in minimum induced stress along the x axis in different paths of reserve layers/isolation layers under different viscosities of fracturing fluid

    图  13   不同上隔层厚度对应的最小水平主应力

    Figure  13.   Minimum horizontal principal stress with different thicknesses of the upper isolation layer

    图  14   不同下隔层厚度对应的最小水平主应力

    Figure  14.   Minimum horizontal principal stress with different thicknesses of the lower isolation layer

    图  15   隔层2和隔层3中不同厚度下x轴方向最小水平诱导应力的变化情况

    Figure  15.   Variations of minimum horizontal induced stress along the x axis with different thicknesses in the 2nd and 3rd isolation layers

    表  1   各层位的地层物性力学参数

    Table  1   Physical and mechanical parameters of formations in different layers

    层位岩性弹性模量/GPa泊松比渗透率/mD孔隙度,%孔隙压力/MPa垂向应力/MPa最大水平主
    应力/MPa
    最小水平主
    应力/MPa
    隔层4泥岩240.280.023.238.2180.5378.5273.06
    储层3灰岩250.272.676.538.2180.7371.6167.25
    隔层3泥岩240.280.081.838.2180.9377.3372.98
    储层2灰岩250.271.536.838.2181.4370.4166.39
    隔层2泥岩240.280.013.138.2182.1676.7472.38
    储层1灰岩250.271.218.138.2184.8371.6167.75
    隔层1泥岩240.280.151.738.2184.9278.7473.48
    下载: 导出CSV

    表  2   水力裂缝Cohesive单元的基本参数

    Table  2   Basic parameters of Cohesive elements of hydraulic fractures

    层位t0n/MPat0s/MPaGcs/(Pa·m)
    储层1126.7
    隔层2254.0
    下载: 导出CSV
  • [1] 张全胜,李明,张子麟,等. 胜利油田致密油储层体积压裂技术及应用[J]. 中国石油勘探,2019,24(2):233–240.

    ZHANG Quansheng, LI Ming, ZHANG Zilin, et al. Application of volume fracturing technology in tight oil reservoirs of Shengli Oilfield[J]. China Petroleum Exploration, 2019, 24(2): 233–240.

    [2] 赵海峰,陈勉,金衍. 水力裂缝在地层界面的扩展行为[J]. 石油学报,2009,30(3):450–454. doi: 10.3321/j.issn:0253-2697.2009.03.025

    ZHAO Haifeng, CHEN Mian, JIN Yan. Extending behavior of hydraulic fracture on formation interface[J]. Acta Petrolei Sinica, 2009, 30(3): 450–454. doi: 10.3321/j.issn:0253-2697.2009.03.025

    [3]

    DANESHY A A. On the design of vertical hydraulic fractures[J]. Journal of Petroleum Technology, 1973, 25(1): 83–97. doi: 10.2118/3654-PA

    [4]

    ZHU Haiyan, DENG Jingen, CHEN Zijian, et al. Perforation optimization of hydraulic fracturing of oil and gas well[J]. Geomechanics and Engineering, 2013, 5(5): 463–483. doi: 10.12989/gae.2013.5.5.463

    [5]

    ZHU Haiyan, ZHAO Xing, GUO Jianchun, et al. Coupled flow-stress-damage simulation of deviated-wellbore fracturing in hard-rock[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 711–724. doi: 10.1016/j.jngse.2015.07.007

    [6]

    ZHU Haiyan, ZHANG Xudong, GUO Jianchun, et al. Stress field interference of hydraulic fractures in layered formation[J]. Geomechanics and Engineering, 2015, 9(5): 645–667. doi: 10.12989/gae.2015.9.5.645

    [7]

    SABERHOSSEINI S E, KESHAVARZI R, AHANGARI K. A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells[J]. Geomechanics and Engineering, 2014, 7(3): 233–246. doi: 10.12989/gae.2014.7.3.233

    [8]

    WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074)[J]. Journal of Petroleum Technology, 1987, 39(2): 209–220. doi: 10.2118/13224-PA

    [9]

    WARPINSKI N R, BRANAGAN P T. Altered-stress fracturing[J]. Journal of Petroleum Technology, 1989, 41(9): 990–997. doi: 10.2118/17533-PA

    [10]

    SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1946, 187(1009): 229–260.

    [11]

    SNEDDON I N, ELLIOT H A. The opening of a Griffith crack under internal pressure[J]. Quarterly of Applied Mathematics, 1946, 4(3): 262–267. doi: 10.1090/qam/17161

    [12]

    OLSON J E, WU Kan. Sequential versus simultaneous multi-zone fracturing in horizontal wells: insights from a non-planar, multi-frac numerical model[R]. SPE 152602, 2012.

    [13]

    CHENG Yueming. Boundary element analysis of the stress distribution around multiple fractures: implications for the spacing of perforation clusters of hydraulically fractured horizontal wells[R]. SPE 125769, 2009.

    [14]

    SHIN D H, SHARMA M M. Factors controlling the simultaneous propagation of multiple competing fractures in a horizontal well[R]. SPE 168599, 2014.

    [15]

    FJÆR E, HOLT R M, HORSRUD P, et al. Chapter 3 geological aspects of petroleum related rock mechanics[J]. Developments in Petroleum Science, 2008, 53: 103–133.

    [16]

    ZHU Haiyan, DENG Jingen, JIN Xiaochun, et al. Hydraulic fracture initiation and propagation from wellbore with oriented perforation[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 585–601. doi: 10.1007/s00603-014-0608-7

    [17] 连志龙,张劲,王秀喜,等. 水力压裂扩展特性的数值模拟研究[J]. 岩土力学,2009,30(1):169–174. doi: 10.3969/j.issn.1000-7598.2009.01.029

    LIAN Zhilong, ZHANG Jin, WANG Xiuxi, et al. Simulation study on of characteristics of hydraulic fracturing propagation[J]. Rock and Soil Mechanics, 2009, 30(1): 169–174. doi: 10.3969/j.issn.1000-7598.2009.01.029

    [18] 李扬,邓金根,刘伟,等. 水平井分段多簇限流压裂数值模拟[J]. 断块油气田,2017,24(1):69–73.

    LI Yang, DENG Jingen, LIU Wei, et al. Numerical simulation of limited entry technique in multi-stage and multi-cluster horizontal well fracturing[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 69–73.

    [19] 李宗利,王亚红,任青文. 自然营造力作用下岩石单裂纹水力劈裂数值仿真模型[J]. 岩石力学与工程学报,2007,26(4):727–733. doi: 10.3321/j.issn:1000-6915.2007.04.010

    LI Zongli, WANG Yahong, REN Qingwen. Numerical simulation model of hydraulic fracturing of rock with a single fracture under natural hydraulic power[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 727–733. doi: 10.3321/j.issn:1000-6915.2007.04.010

    [20]

    ZHU H Y, DENG J G, LIU S J, et al. Hydraulic fracturing experiments of highly deviated well with oriented perforation technique[J]. Geomechanics and Engineering, 2014, 6(2): 153–172. doi: 10.12989/gae.2014.6.2.153

    [21]

    ZHU Haiyan, WANG Heng, TANG Xuanhe, et al. Hydraulic fracture propagation in sand-mudstone interbedded reservoir integrated with different fluid flow of multi-perforated fractures[R]. ARMA-CUPB-19-6836, 2019.

  • 期刊类型引用(10)

    1. 李顺雨,江涛,杨桢剑,魏勇,马羽晋,肖东. 川西地区气井环空带压条件下水泥环裂缝封堵规律研究. 钻采工艺. 2024(03): 153-160 . 百度学术
    2. 完颜祺琪,毛涛,王云,黄盛,李康,李早元,苏东华. 储气库固井水泥石渗透率演化规律. 断块油气田. 2024(05): 930-935 . 百度学术
    3. 王涛,申峰,展转盈,窦倩,郭庆. 页岩气小井眼水平井纳米增韧水泥浆固井技术. 石油钻探技术. 2023(03): 51-57 . 本站查看
    4. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
    5. 杨伟. 川南区块页岩气井压稳防漏固井技术研究. 钻探工程. 2023(05): 153-158 . 百度学术
    6. 王俊博,田继军,李飞,张轩铭,季东良,王先美,李鑫. 准噶尔盆地南缘煤层气井管柱腐蚀原因及防腐策略. 特种油气藏. 2023(05): 151-157 . 百度学术
    7. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 . 百度学术
    8. 刘奎,丁士东,初永涛,刘仍光. 页岩气井压裂交变载荷水泥环密封能力研究. 石油机械. 2023(11): 79-86 . 百度学术
    9. 王典,李军,张伟,连威. 吉木萨尔页岩油井水泥环性能评价. 新疆石油天然气. 2023(04): 49-55 . 百度学术
    10. 高德利,刘奎,王宴滨,刘金海,李轩. 页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展. 石油学报. 2022(12): 1798-1812 . 百度学术

    其他类型引用(2)

图(15)  /  表(2)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  259
  • PDF下载量:  113
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-03-28
  • 修回日期:  2021-06-28
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回