ROP Improvement Technology for Horizontal Shale Oil Wells in Daqing Oilfield
-
摘要:
针对大庆油田古龙区块页岩油水平井钻井过程中存在井壁易失稳、摩阻扭矩大和钻井周期长等技术难点,以大庆页岩油高效快速开发为目的,分析了该区块地层特点和钻井施工难点,优化了三开井身结构,确保页岩目的层施工安全;根据实钻经验及现有技术水平,对井眼轨道进行优化,降低施工难度;针对二开直井段缩径、三开造斜段和水平段钻井周期长等问题,进行了井壁修整工具、旋冲螺杆钻井工具、清砂接头和水力振荡器等工具研究,并进行了钻井参数优化,形成了大庆油田页岩油水平井钻井提速技术。该技术在大庆油田古龙区块3口页岩油水平井进行了现场试验,平均完钻井深4 691 m,平均机械钻速19.03 m/h,机械钻速提高53.7%,平均钻井周期35.23 d。研究与现场试验表明,大庆油田页岩油水平井钻井提速技术可为大庆油田页岩油高效开发提供技术支撑。
Abstract:Technical difficulties including borehole wall instability, large friction torque, and long drilling cycles are encountered while drilling horizontal shale oil wells in the Gulong Block of Daqing Oilfield. For the purpose of efficient and rapid development of shale oil, a series of research works have been carried out. In light of the formation characteristics and drilling construction difficulties of the block, a third-spud casing program was optimized to ensure safe well construction in the target shale formation. According to drilling practices and existing techniques, the wellbore trajectory was upgraded to reduce the construction difficulty. In addition, the research was performed considering the hole shrinkage in the second-spud vertical section and the long drilling cycles in the third-spud build-up and horizontal sections. The research was performed on the tools and technologies, such as borehole wall dressing tools, rotary screws, sand cleaning joints, and hydraulic oscillators, and the drilling parameters were optimized. Finally, a rate of penetration (ROP) improvement technology for horizontal shale oil wells in Daqing Oilfield was developed. Field tests were conducted in three horizontal wells in Daqing Oilfield, with an average well depth of 4 691 m, an average drilling cycle of 35.23 d, and an average ROP of 19.03 m/h (enhanced by 53.7%). The research and tests demonstrate that this technology can provide technical support for the efficient development of shale oil in Daqing Oilfield.
-
Keywords:
- shale oil /
- horizontal well /
- ROP improvement /
- drilling parameters /
- casing program /
- drilling speedup tool /
- Daqing Oilfield
-
-
表 1 3口水平井现场试验数据
Table 1 Field test data from 3 horizontal wells
井号 井深/
m水平段长/
m机械钻速/
(m·h–1)钻井周期/
d钻速提高
效果,%试验1井 4 735 2 150 19.34 35.25 56.22 试验2井 4 623 1 820 18.65 34.23 50.65 试验3井 4 715 2 140 19.10 36.21 54.28 -
[1] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[2] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004 SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
[3] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072 ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
[4] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560–568. doi: 10.3969/j.issn.1672-7703.2019.05.003 DU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560–568. doi: 10.3969/j.issn.1672-7703.2019.05.003
[5] 侯启军,何海清,李建忠,等. 中国石油天然气股份有限公司近期油气勘探进展及前景展望[J]. 中国石油勘探,2018,23(1):1–13. doi: 10.3969/j.issn.1672-7703.2018.01.001 HOU Qijun, HE Haiqing, LI Jianzhong, et al. Recent progress and prospect of oil and gas exploration by PetroChina Company Limited[J]. China Petroleum Exploration, 2018, 23(1): 1–13. doi: 10.3969/j.issn.1672-7703.2018.01.001
[6] 张瀚之,翟晓鹏,楼一珊. 中国陆相页岩油钻井技术发展现状与前景展望[J]. 石油钻采工艺,2019,41(3):265–271. ZHANG Hanzhi, ZHAI Xiaopeng, LOU Yishan. Development status and prospect of the drilling technologies used for continental shale oil reservoirs in China[J]. Oil Drilling & Production Technology, 2019, 41(3): 265–271.
[7] 雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017 LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
[8] 王静,张军华,谭明友,等. 砂砾岩致密油藏地震预测技术综述[J]. 特种油气藏,2019,26(1):7–11. WANG Jing, ZHANG Junhua, TAN Mingyou, et al. Seismic prediction review for glutenite tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 7–11.
[9] 王建龙,齐昌利,陈鹏,等. 长水平段水平井高效钻井关键技术研究[J]. 石油化工应用,2018,37(3):95–97, 102. doi: 10.3969/j.issn.1673-5285.2018.03.021 WANG Jianlong, QI Changli, CHEN Peng, et al. Research and application of key techniques for horizontal well drilling in long horizontal section oilfield[J]. Petrochemical Industry Application, 2018, 37(3): 95–97, 102. doi: 10.3969/j.issn.1673-5285.2018.03.021
[10] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036 YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
[11] 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术,2021,49(4):53–58. doi: 10.11911/syztjs.2021078 ZHAO Bo, CHEN Erding. Drilling technologies for horizontal shale oil well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53–58. doi: 10.11911/syztjs.2021078
[12] 席传明,史玉才,张楠,等. 吉木萨尔页岩油水平井JHW00421井钻完井关键技术[J]. 石油钻采工艺,2020,42(6):673–678. XI Chuanming, SHI Yucai, ZHANG Nan, et al. Key technologies for the drilling and completion of shale oil horizontal well JHW00421 in Jimusaer[J]. Oil Drilling & Production Technology, 2020, 42(6): 673–678.
[13] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[14] 郑锋,王建龙,吴欣袁,等. 大斜度井岩屑床分析及新型井眼清洁工具应用[J]. 石油矿场机械,2018,47(1):80–82. ZHENG Feng, WANG Jianlong, WU Xinyuan, et al. Analysis of cuttings bed in highly deviated well and application of new hole cleaning tools[J]. Oil Field Equipment, 2018, 47(1): 80–82.
[15] 余长柏,黎明,刘洋,等. 水力振荡器振动特性的影响因素[J]. 断块油气田,2016,23(6):842–845, 850. YU Changbai, LI Ming, LIU Yang, et al. Influence factors on vibration characteristics of hydraulic oscillator[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 842–845, 850.
[16] 李建亭,胡金建,罗恒荣. 低压耗增强型水力振荡器的研制与现场试验[J]. 石油钻探技术,2022,50(1):71–75. doi: 10.11911/syztjs.2021137 LI Jianting, HU Jinjian, LUO Hengrong. Development and field tests of an enhanced hydraulic oscillator with low pressure loss[J]. Petroleum Drilling Techniques, 2022, 50(1): 71–75. doi: 10.11911/syztjs.2021137
-
期刊类型引用(10)
1. 黄熠,刘和兴,刘智勤,彭巍,徐超. 南海西部浅层大位移水平井钻井关键技术与实践. 中国海上油气. 2023(06): 115-123 . 百度学术
2. 程仲,李宁,丁翔翔,陈玉山,韩雪银,李天太,张菲菲. 浅层大位移井井眼清洁效果评价及优化方法. 西安石油大学学报(自然科学版). 2022(06): 60-66+96 . 百度学术
3. 李杉. 大位移井NP13-1346钻井技术. 西部探矿工程. 2021(03): 110-113+118 . 百度学术
4. 陈新勇,徐明磊,马樱,徐雅萍,赵博,韩煦. 杨税务潜山油气藏大位移井钻井完井关键技术. 石油钻探技术. 2021(02): 14-19 . 本站查看
5. 张强,秦世利,饶志华,田波,左坤. 南海超大水垂比大位移M井钻井关键技术. 石油钻探技术. 2021(05): 19-25 . 本站查看
6. 李泽群. 以A油田AX1井为例探讨大位移井钻井关键技术. 石油和化工设备. 2020(03): 92-94 . 百度学术
7. 豆志远,王昆剑,李进,谢小品,李瑞峰,朱培,王伟. 渤海油田水平分支井钻完井关键技术. 特种油气藏. 2020(02): 157-163 . 百度学术
8. 王建龙,许京国,杜强,金海峰,程东,郑锋,李瑞明. 大港油田埕海2-2人工岛钻井提速提效关键技术. 石油机械. 2019(07): 30-35 . 百度学术
9. 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法. 石油钻探技术. 2019(03): 1-8 . 本站查看
10. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
其他类型引用(0)