长庆油田陇东地区页岩油大偏移距三维水平井钻井技术

田逢军, 王运功, 唐斌, 李治君, 刘克强

田逢军, 王运功, 唐斌, 李治君, 刘克强. 长庆油田陇东地区页岩油大偏移距三维水平井钻井技术[J]. 石油钻探技术, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
引用本文: 田逢军, 王运功, 唐斌, 李治君, 刘克强. 长庆油田陇东地区页岩油大偏移距三维水平井钻井技术[J]. 石油钻探技术, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
TIAN Fengjun, WANG Yungong, TANG Bin, LI Zhijun, LIU Keqiang. Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
Citation: TIAN Fengjun, WANG Yungong, TANG Bin, LI Zhijun, LIU Keqiang. Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079

长庆油田陇东地区页岩油大偏移距三维水平井钻井技术

详细信息
    作者简介:

    田逢军(1969—),男,甘肃庆城人,2007年毕业于西安石油大学石油工程专业,高级工程师,从事定向井、水平井钻井技术研究与相关管理工作。E-mial:1835678108@qq.com。

  • 中图分类号: TE243+.1

Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield

  • 摘要: 长庆油田陇东地区页岩油施工区域沟壑纵横,水资源、基本农田和森林资源保护区较多,采用水平井开发受地形地貌及资源保护区影响较大,三维水平井偏移距的大小直接影响水平井平台布井数量及大平台工厂化作业,影响地下资源的有效动用。为此,在分析大偏移距三维水平井特点及钻井难点的基础上,优化剖面设计,优选造斜点、消偏井斜角、方位角及消偏井段,完善井眼轨迹控制方式,在不使用旋转导向系统的情况下优化常规螺杆钻具和PDC钻头,并综合应用降摩减阻工具及适用于页岩油大偏移距钻井的水基CQSP-4钻井液体系等, 形成了陇东页岩油大偏移距三维水平井钻井技术。陇东地区6口水平段长度900.00 m以上的大偏移距三维页岩油水平井应用了该技术,摩阻扭矩明显减小,钻进安全高效,取得了很好的现场应用效果。该技术的成功应用,支撑了陇东地区页岩油大平台多层系多钻机工厂化高效开发,也支撑了钻井钻机作业方式由单机单队向工厂化、集群化转型。
    Abstract: Ravines and gullies criss-cross the shale oil reservoirs of the Longdong Area in the Changqing Oilfield, where there are also numerous protected zones for water and forest resources, plus prime farmlands. The development of horizontal wells is greatly restrained by the topography and protection zones, and the offset of 3D horizontal wells directly affects the number of horizontal well platforms and the factory-like operation of large platforms, and affects the effective utilization of subsurface resources. Based on the analysis of the characteristics and drilling difficulties of long-offset 3D horizontal wells, the wellbore profile design was optimized, and kick-off points, azimuths, deviation angles, and well sections for eliminating offset were selected to improve the control mode of hole trajectories. In the absence of a rotary steering system, conventional positive displacement motors (PDM) and polycrystalline diamond compact (PDC) bits were upgraded. In addition, tools for reducing friction and a water-based CQSP-4 drilling fluid system suitable for long-offset horizontal shale oil wells were employed. Finally, the drilling technology for long-offset 3D horizontal shale oil wells in the Longdong Area was developed. This technology was applied to 6 3D horizontal wells with offsets over 900 m in Longdong Area. Friction torque was reduced significantly and the drilling process was safe and efficient, with good field application effect achieved. The successful application of the technology can support factory-like efficient development of the large shale oil platforms in the Longdong Area, which have multilayered systems and multiple drilling rigs. Further, it can facilitate the transformation of the drilling operation mode from single-rig and single-team to industrialized and clustered production.
  • 图  1   三维水平井偏移距、有效靶前距示意

    Figure  1.   Offset and effective frontal distance from the target point of 3D horizontal wells

    表  1   强化前后的钻井参数对比

    Table  1   Comparison between drilling parameters before and after the enhancement

    项目钻压/kN转速/(r·min–1排量/L泵压/MPa
    强化前 80703415
    强化后140803820
    下载: 导出CSV

    表  2   HH60-1井与同区块HH34-9井钻井指标对比

    Table  2   Comparison between drilling indexes for Well HH60-1 and Well HH34-9 in the same block

    井号偏移距/m有效靶前距/m水平段长/m水垂比偏垂比最大扭矩/(kN·m)最大摩阻/kN
    HH34-9972.00344.521 355.000.630.453388
    HH60-11 102.00 429.702 000.001.030.563286
    下载: 导出CSV
  • [1] 梁晓伟,关梓轩,牛小兵,等. 鄂尔多斯盆地延长组7段页岩油储层储集性特征[J]. 天然气地球科学,2020,31(10):1489–1500.

    LIANG Xiaowei, GUAN Zixuan, NIU Xiaobing, et al. Reservoir characteristics of shale oil in Chang 7 Member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(10): 1489–1500.

    [2] 付锁堂,金之钧,付金华,等. 鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义[J]. 石油学报,2021,42 (5):561–569. doi: 10.7623/syxb202105001

    FU Suotang, JIN Zhijun, FU Jinhua, et al. Transformation of understanding from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development[J]. Acta Petrolei Sinica, 2021, 42 (5): 561–569. doi: 10.7623/syxb202105001

    [3] 王晓雯,关平,梁晓伟,等. 鄂尔多斯盆地长 7 段页岩油优质储层特征分析[J]. 北京大学学报(自然科学版),2021,57(3):459–469.

    WANG Xiaowen, GUAN Ping, LIANG Xiaowei, et al. Analysis of pore properties of favorable shale oil reservoir of Chang-7 in Ordos Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3): 459–469.

    [4] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术, 2020,48(1):9–14. doi: 10.11911/syztjs.2020029

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029

    [5] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4): 28–36. doi: 10.11911/syztjs.2020050

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28–36. doi: 10.11911/syztjs.2020050

    [6] 田逢军,王万庆,杨光,等. 长庆油田中半径三维水平井环平3井钻井技术[J]. 石油钻采工艺,2009,31(6):27–31. doi: 10.3969/j.issn.1000-7393.2009.06.007

    TIAN Fengjun, WANG Wanqing, YANG Guang, et al. Drilling technology for 3D medium-radius Huanping-3 horizontal well in Changqing Oil Field[J]. Oil Drilling & Production Technology, 2009, 31(6): 27–31. doi: 10.3969/j.issn.1000-7393.2009.06.007

    [7] 梁海军,李娜. 适用于长庆大偏移距三维水平井的新型剖面和轨迹评价几何模型[J]. 西部探矿工程,2005,27(10):37–40. doi: 10.3969/j.issn.1004-5716.2005.10.018

    LIANG Haijun, LI Na. A new geometric model for profile and trajectory evaluation of 3D horizontal wells with large offset in Changqing[J]. West-China Exploration Engineering, 2005, 27(10): 37–40. doi: 10.3969/j.issn.1004-5716.2005.10.018

    [8] 薛让平,李录科,杨光. 三维水平井难度系数的界定与应用[J]. 钻采工艺,2019,42 (1):96–98. doi: 10.3969/J.ISSN.1006-768X.2019.01.29

    XUE Rangping, LI Luke, YANG Guang. Definition and application of difficulty coefficient of 3D horizontal well[J]. Drilling & Production Technology, 2019, 42 (1): 96–98. doi: 10.3969/J.ISSN.1006-768X.2019.01.29

    [9] 彭元超,韦海防,周文兵. 长庆致密油3 000 m长水平段三维水平井钻井技术[J]. 钻采工艺,2019,42(5):106–107, 112. doi: 10.3969/J.ISSN.1006-768X.2019.05.31

    PENG Yuanchao, WEI Haifang, ZHOU Wenbing. Drilling technology and production technology of 3D horizontal well in 3000 m long horizontal section of Changqing tight oil[J]. Drilling & Production Technology, 2019, 42(5): 106–107, 112. doi: 10.3969/J.ISSN.1006-768X.2019.05.31

    [10] 周文军,巨满成,王彦博,等. 三维水平井YP-3X井钻井难点与对策[J]. 石油天然气学报 (江汉石油学院学报),2013,35(11):89–93.

    ZHOU Wenjun, JU Mancheng, WANG Yanbo, et al. Drilling difficulties and Countermeasures of 3D horizontal Well YP-3X[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2013, 35(11): 89–93.

    [11] 王勇茗,余世福,周文军,等. 长庆致密油三维水平井钻井技术研究与应用[J]. 西南石油大学学报(自然科学版),2015,37(6):79–84.

    WANG Yongming, YU Shifu, ZHOU Wenjun, et al. Research and application of the 3D horizontal well drilling technology in Changqing tight oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(6): 79–84.

    [12] 沈国兵,刘明国,晁文学,等. 涪陵页岩气田三维水平井井眼轨迹控制技术[J]. 石油钻探技术,2016,44 (2):10–15. doi: 10.11911/syztjs.201602002

    SHEN Guobing, LIU Mingguo, CHAO Wenxue, et al. 3D trajectory control technology for horizontal wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44 (2): 10–15. doi: 10.11911/syztjs.201602002

  • 期刊类型引用(10)

    1. 隋成龙. 渤海油田某大斜度井保型取心技术难点及对策. 石油工业技术监督. 2023(05): 9-13 . 百度学术
    2. 苏朝博. 基于构型界面控制的浅层优快钻井取心卡层方法. 石油钻采工艺. 2023(06): 661-667 . 百度学术
    3. 韩成,罗鸣,刘忠宝,杨玉豪,邓文彪,周庆元. 莺琼盆地半潜式平台超高温高压钻井取心技术. 钻采工艺. 2021(04): 28-30 . 百度学术
    4. 段绪林,卓云,张杰,熊鸿照,陈锦泉,张运迪. 高渗透易阻卡地层防卡旋转割心工艺——以威207井为例. 天然气勘探与开发. 2021(03): 68-72 . 百度学术
    5. 李鑫淼,李宽,梁健,尹浩,王志刚,孙建华,张永勤. 复杂地层取心钻进堵心原因分析及其预防措施. 探矿工程(岩土钻掘工程). 2018(12): 12-15 . 百度学术
    6. 和鹏飞,李振坤,刘杰,赵秋璇,冯晟,张彬奇. 渤中凹陷太古界潜山破碎地层取心技术. 石油钻采工艺. 2018(S1): 115-117+128 . 百度学术
    7. 吴为. 伊朗Y油田取心作业堵心现象分析. 化工管理. 2017(26): 71-72 . 百度学术
    8. 杨立文. 古巴Majaguillar稠油油藏大斜度井取心技术. 石油机械. 2017(09): 53-56 . 百度学术
    9. 苏洋. 伊拉克格拉芙油田Mishrif储层长筒取心技术. 石油钻探技术. 2017(05): 30-35 . 本站查看
    10. 梁海明,裴学良,赵波. 页岩地层取心技术研究及现场应用. 石油钻探技术. 2016(01): 39-43 . 本站查看

    其他类型引用(2)

图(1)  /  表(2)
计量
  • 文章访问数:  777
  • HTML全文浏览量:  526
  • PDF下载量:  170
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-06-25
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回