The Current Status and Development Suggestions for Sinopec’s Staged Fracturing Technologies of Horizontal Shale Oil Wells
-
摘要: 水平井分段压裂技术是实现页岩油高效开发的关键,经过十几年的技术研究与实践,中国石化初步形成了以“超密切割布缝、暂堵转向、高强度加砂、储层保护”为主体的页岩油水平井分段压裂技术,并在部分地区实现了页岩油勘探重大突破,但是工艺参数和技术水平与国外水平井分段压裂技术相比尚有差距。为此,在介绍中国石化页岩油水平井分段压裂技术现状的基础上,对比了国内外主要页岩油区块地质特征的差异,分析了中国石化页岩油压裂技术需求及面临的挑战,并针对中国石化陆相页岩油储层的特点,从地质–开发–工程一体化研究与实施的角度出发,同时考虑经济性及现场可操作性,提出了中高成熟度页岩油压裂技术和中低成熟度页岩油原位改质技术的发展建议,对于尽快形成中国石化页岩油开发技术体系,实现页岩油经济效益开发具有一定的指导意义。Abstract: Staged fracturing technologies of horizontal wells are the key to efficient development of shale oil. After more than a decade of research and practice, Sinopec has achieved major breakthroughs in shale oil exploration in several areas, and has preliminarily developed the staged fracturing technologies for horizontal shale oil wells, which are characterized by ultra-dense fractures, temporary plugging and diverting, high concentration proppant adding and reservoir protection. However, a gap still exists when comparing with the technological parameters and the technical level of the counterparts abroad. In this work, engineering geological characteristics of shale oil at home and abroad were compared, and the requirements and challenges for Sinopec’s shale oil fracturing technologies were analyzed. In addition, based on the characteristics of continental shale oil reservoirs, development suggestions for the fracturing technologies of shale oil with medium-high maturity and the in-situ upgrading technologies of the shale oil with medium-low maturity were provided with respect to the research and implementation of integration of geology and engineering, with consideration of economy and field operational feasibility. The suggestions can provide guidance in accelerating the building of a technical system for continental shale oil development and achieving the goal of economic development of shale oil.
-
-
表 1 国内外页岩油水平井分段压裂参数对比
Table 1 Comparison between staged fracturing parameters of shale oil horizontal wells at home and abroad
技术参数 国内 国外 井网参数 单井为主或4井/平台,井距300~500 m 6~10井/平台,井距150~300 m 水平段长/m 800~2 000 2 000~3 000 压裂段长/m 60~80 45~56 段簇划分/(簇·段−1) 2~4 4~6 加砂强度/(t·m−1) 1.0~2.5 3.0~3.5 砂液比,% 2~8 6~10 压裂方式 CO2伴注压裂、逆混合压裂、拉链式压裂 多井同步分流压裂、拉链式压裂 表 2 国内外页岩油区块地质特征对比
Table 2 Comparison between geological characteristics of shale oil blocks at home and abroad
区块 埋深/
m优质页岩
厚度/m孔隙度,
%TOC,
%地层压力
系数硅质含
量,%碳酸质
含量,%杨氏模量/
GPa泊松比 水平应力
差/MPa国外 Eagle Ford 1 219~3 658 50~350 4~12 2.00~12.00 1.30~1.80 10~25 40~90 30~58 0.15~0.30 Permian 2 286~3 750 30~150 8~12 2.00~9.00 1.50 >90① <0.20 Bakken 1 370~2 300 >30 5~12 11.00~20.00 1.30~1.50 60~80① 0.22~0.29 中国石化 济阳坳陷 3 150~4 500 40~60 3~12 1.00~6.00 1.00~1.50 15~20 55~60 10~50 0.15~0.19 5~10 潜江凹陷 3 200~3 900 10~15 3~10 1.00~9.00 1.00~1.70 3~15 40~60 13~23 0.20~0.37 4~7 复兴地区侏罗系 2 500~2 900 26~28 4~7 1.64~2.08 >1.48 27~32 5~11 13~20 0.15~0.19 7~11 中国石油 吉木萨尔 2 500~3 000 8~12 6~16 平均5.16 1.00 21 26 25~29 0.25~0.28 3~10 长庆 2 000~2 400 >5~10 5~10 3.00~22.00 0.90~1.10 50~60 18~20 15~30 0.19~0.30 2~3 沧东凹陷 3 300~3 800 37~93 1~9 0.13~12.90 1.00~1.67 17~48 10~58 — 0.27~0.30 6~25 注:①为硅质和碳酸质的含量和。 -
[1] 王倩茹,陶士振,关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学,2020,31(3):417–427. WANG Qianru, TAO Shizhen, GUAN Ping. Progress in research and exploration & development of shale oil in continental basins in China[J]. Natural Gas Geoscience, 2020, 31(3): 417–427.
[2] 石林,张鲲鹏,慕立俊. 页岩油储层压裂改造技术问题的讨论[J]. 石油科学通报,2020,5(4):496–511. doi: 10.3969/j.issn.2096-1693.2020.04.043 SHI Lin, ZHANG Kunpeng, MU Lijun. Discussion of hydraulic fracturing technical issues in shale oil reservoirs[J]. Petroleum Science Bulletin, 2020, 5(4): 496–511. doi: 10.3969/j.issn.2096-1693.2020.04.043
[3] 何海清,范土芝,郭绪杰,等. 中国石油“十三五”油气勘探重大成果与“十四五”发展战略[J]. 中国石油勘探,2021,26(1):17–30. HE Haiqing, FAN Tuzhi, GUO Xujie, et al. Major achievements in oil and gas exploration of PetroChina during the 13th Five-Year Plan period and its development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 17–30.
[4] 廖腾彦,余丽彬,李俊胜. 吉木萨尔致密砂岩油藏工厂化水平井钻井技术[J]. 石油钻探技术,2014,42(6):30–33. LIAO Tengyan, YU Libin, LI Junsheng. A factory-like drilling technology of horizontal wells for tight sandstone reservoirs in the Jimusaer Area[J]. Petroleum Drilling Techniques, 2014, 42(6): 30–33.
[5] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[6] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036 YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
[7] 雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017 LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
[8] 万绪新. 渤南区块页岩油地层油基钻井液技术[J]. 石油钻探技术,2013,41(6):44–50. doi: 10.3969/j.issn.1001-0890.2013.06.009 WAN Xuxin. Oil-based drilling fluid applied in drilling shale oil reservoirs in Bonan Block[J]. Petroleum Drilling Techniques, 2013, 41(6): 44–50. doi: 10.3969/j.issn.1001-0890.2013.06.009
[9] 孙焕泉,周德华,赵培荣,等. 中国石化地质工程一体化发展方向[J]. 油气藏评价与开发,2021,11(3):269–280. SUN Huanquan, ZHOU Dehua, ZHAO Peirong, et al. Geology-engineering integration development direction of Sinopec[J]. Reservoir Evaluation and Development, 2021, 11(3): 269–280.
[10] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[11] 管保山,刘玉婷,梁利,等. 页岩油储层改造和高效开发技术[J]. 石油钻采工艺,2019,41(2):212–223. GUAN Baoshan, LIU Yuting, LIANG Li, et al. Shale oil reservoir reconstruction and efficient development technology[J]. Oil Drilling & Production Technology, 2019, 41(2): 212–223.
[12] DU H, RADONJIC M. The mechanism of fracture initiation in shale rocks: Pottsville cap-rock-shale vs. Marcellus unconventional reservoir-shale[R]. ARMA-2019-0144, 2019.
[13] ELTAHAN E, REGO F B, YU W, et al. Impact of well shut-in after hydraulic-fracture treatments on productivity and recovery in shale oil reservoirs[R]. SPE 200395, 2020.
[14] MAHMOOD M N, GUO B Y. An analytical method for optimizing fracture spacing in shale oil reservoirs[R]. SPE 197083, 2019.
[15] SAKAI T, KURIHARA M. Development of a three-dimensional, three-phase, quadruple-porosity/quadruple-permeability white oil ty-pe simulator with embedded discrete fracture model for predicting shale gas/oil flow behavior[R]. SPWLA-JFES-2017-Q, 2017.
[16] MAGSIPOC E, ABDELAZIZ A, HA J, et al. Analysis of the fracture morphologies from a laboratory hydraulic fracture experiment on montney shale[R]. ARMA-IGS-20-061, 2020.
[17] LI M, MAGSIPOC E, ABDELAZIZ A, et al. Mapping fracture complexity in hydraulically fractured montney shale by serial section reconstruction[R]. ARMA-2020-2053, 2020.
[18] BODINI S A, FORNI L P, TUERO F, et al. Unconventional EOR: field tests results in Vaca Muerta shale play: a capillary based improved oil recovery case study for shale/tight oil scenarios[R]. SPE 191877, 2018.
[19] ZHANG R X, HOU B, ZENG Y J, et al. Investigation on hydraulic fracture initiation and propagation with LPG fracturing in shale formation based on true tri-axial laboratory experiments[R]. SPE 191107, 2018.
[20] LI Z, HOU B, ZHANG K, et al. Microscopic fracture mechanism of inter-salt shale oil reservoir based on three-dimensional reconstruction of CT[R]. ISRM-EUROCK-2020-126, 2020.
[21] JIANG B Y, LU C, HUANG C H, et al. A study on deformation characteristics of shale self-propped fracture under normal stress[R]. ARMA-2020-1744, 2020.
[22] CHEN Z M, LIU H, LIAO X W, et al. Pressure transient analysis of wells in shale oil reservoirs with complex hydraulic fracture networks based on numerical approach[R]. SPE 196568, 2019.
[23] YANG X, GUO B Y, TIMIYAN T A. A mathematical model for predicting long-term productivity of channel-fractured shale gas/oil wells[R]. SPE 204471, 2020.
[24] 黎茂稳,马晓潇,蒋启贵,等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率,2019,26(1):13–28. LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13–28.
[25] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004 SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
[26] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058 YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
[27] 蒋廷学,左罗,黄静. 少水压裂技术及展望[J]. 石油钻探技术,2020,48(5):1–8. doi: 10.11911/syztjs.2020119 JIANG Tingxue, ZUO Luo, HUANG Jing. Development trends and prospects of less-water hydraulic fracturing technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1–8. doi: 10.11911/syztjs.2020119
[28] MANCHANDA R, ZHENG S, SHARMA M. Fracture sequencing in multi-well pads: impact of staggering and lagging stages in zipper fracturing on well productivity[R]. SPE 199729, 2020.