顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术

李新勇, 李骁, 赵兵, 王琨, 苟波

李新勇, 李骁, 赵兵, 王琨, 苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
引用本文: 李新勇, 李骁, 赵兵, 王琨, 苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
LI Xinyong, LI Xiao, ZHAO Bing, WANG Kun, GOU Bo. Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
Citation: LI Xinyong, LI Xiao, ZHAO Bing, WANG Kun, GOU Bo. Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068

顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术

基金项目: 中国石化科技攻关项目“顺北超深断溶体油藏高效酸压技术研究”(编号:P20064-3)资助
详细信息
    作者简介:

    李新勇(1972—),男,新疆乌鲁木齐人,1997年毕业于西南石油学院采油工程专业,高级工程师,主要从事油气开采、储层改造方面的研究与管理工作。E-mail:lixinyong.xbsj@sinopec.com

    通讯作者:

    李骁,E-mail: 279834235@qq.com

  • 中图分类号: TE35

Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield

  • 摘要: 顺北油田S井目的层属于典型的超深超高温断溶体储层,工程地质条件和井筒条件复杂,酸压改造面临巨大挑战。针对上述酸压改造难点,提出了“回填井段集中改造+酸损伤降破+管柱浅下+加重压裂液组合提排量+前置液造缝+交替注入造高导流裂缝+自生酸疏通远端断溶体”的复合酸压技术,通过试验优选了超高温工作液体系,包括180 ℃聚合物压裂液、160 ℃加重瓜胶压裂液、160 ℃交联酸和自生酸;基于数值模拟结果优化了大型酸压方案,推荐压裂液规模为1 800~2 200 m3,酸液规模为800~1 000 m3。现场试验表明,相同注液排量下,注加重压裂液的井口压力比注聚合物压裂液降低了7%,应用效果明显。S井大型酸压后,测试天然气产量10.45×104 m3/d,取得了顺北4号断裂带开发的突破,也为类似油气藏大型酸压方案优化设计提供了技术借鉴。
    Abstract: The target formation of Well S in Shunbei Oilfield is a typical ultra-deep fault-karst carbonate reservoir. Due to the complex engineering and geological conditions and wellbore conditions, acid fracturing is confronted with great challenges. In light of above difficulties in reservoir stimulation, a set of compound acid fracturing technologies was proposed by "centralized treatment by backfilling + acid damage to reduce fracture pressure + shallow pipe string + flow rate increase by weighted fracturing fluid + pad fluid fracturing + alternative injection for high conductivity fracture + autogenous acid to connect the far fault-karst". A set of acid fracturing fluid systems was optimized for resistance to ultra-high temperature by tests, included polymer fracturing fluid at 180 ℃, weighted guar gum fracturing fluid at 160 ℃, crosslinking acid at 160 ℃, and autogenous acid. Then, an optimized large-scale acid fracturing treatment plan was made based on recommendations for working fluid scales by numerical simulation. The recommended scale of fracturing fluid was 1 000–1 200 m3 and the scale of acid fluid was 800–1 000 m3. The field test showed a significant decrease in the wellhead pressure with weighted fracturing fluid, which was 7% lower than that with polymer fracturing fluid under the same injection rate. After the large-scale acid fracturing of Well S, the test production of natural gas was 10.45 × 104 m3/d, which made a breakthrough in the exploration of the Shunbei No. 4 fault zone and provided valuable guidance for the large-scale acid fracturing design of similar reservoirs.
  • 胜利海上油田主力层系馆陶组为疏松砂岩油藏,具有油层多、井段长、夹层厚、层间非均质性强和易出砂等特点,开发过程中因油井出砂和渗透率差异大造成的层间矛盾是影响其生产的主要因素[1-3]。特别是经过多年强注强采,层间矛盾更加突出,注入水单层突进或局部突进比较严重,开发效果变差。目前,胜利油田98%的海上油井采用电动潜油泵合采[4],在海上8口油井进行了分层产液测试,测试发现,合采产液量为579.8 t/d,分层采产液量合计为1 256.2 t/d,合采产液量为分层采累计产液量的46.2%。测试结果表明,多层合采对油井产量产生了较大影响。因此,为使各油层均衡生产,充分发挥中低渗透层的产能,有必要进行分层采油。针对海上疏松砂岩油藏,目前国内外仅有中国海油应用了分层防砂分层采油技术[5-6]。中国海油应用分层防砂分层采油技术井的生产套管为ϕ244.5 mm套管,防砂后通径达120.7 mm,满足分层采油管柱下入要求。而胜利油田海上油井的生产套管主要为ϕ177.8 mm套管,防砂后通径仅76.0 mm,无法直接应用中国海油分层防砂分层采油技术。国内陆上成熟的分层采油技术采用机械或液压滑套控制各层的开关,主要针对的是有杆泵采油井,且不能在线调节流量[7-14]。因此,为满足胜利海上电动潜油泵井分采要求,笔者研究了ϕ177.8 mm生产套管大通径一步法分层充填防砂技术,确保防砂后通径在90.0 mm以上,并下入具有自膨胀封隔功能的在线调节分层采油管柱,实现了在ϕ177.8 mm生产套管内分层防砂分层采油。

    目前胜利海上油田主要采用分层挤压充填+全井循环充填防砂技术[15-17],需要分2步完成,留井管柱为笼统防砂完井管柱,无法实现分层采油,同时该技术还存在以下问题:1)完成分层挤压充填、起出分层充填管柱后,再次下入全井循环充填防砂管柱过程中地层易吐砂,导致近井地带充填不密实;2)环空和炮眼采用笼统充填,由于层间差异大,易形成砂桥,造成环空充填不密实;3)留井防砂管柱通径小,仅为76.0 mm,无法满足后期分层采油管柱下入要求。因此,研发了大通径分层充填防砂管柱,一趟管柱可实现3层以上的挤压充填与循环充填施工,确保各层充填密实,同时留井管柱通径达到98.6 mm,为后期分层采油提供了空间。

    大通径分层充填防砂管柱由内外服务管柱构成(见图1):外服务管柱主要包括分层封隔器、外充填工具、反洗工具及防砂筛管等工具;内服务管柱包括挤充转换工具、开关控制装置及内充填工具等。通过拖动内服务管柱,依次实现各层差异化防砂(压裂、挤压、循环或挤压循环一体化),具备不动管柱快速充填及反洗井等功能,安全可靠。

    图  1  大通径分层充填防砂管柱
    Figure  1.  Separate layer packing sand control pipe string with large diameter

    在井口将内外服务管柱连接好,下至设计位置,通过油管加压至8 MPa坐封顶部封隔器,继续加压至18 MPa打开内充填滑套,正转油管实现丢手;上提内服务管柱至定位装置处,通过油管加压至18 MPa坐封层间封隔器;下放管柱至外充填口位置进行充填,充填结束后,不动管柱反洗井至出口处的洗井液不含砂,上提管柱充填上层,起出内服务管柱,即可下入分层采油管柱。

    1)采用高承压强悬挂分层封隔系统,解决了海上大排量地层充填过程中产生的25 MPa以上的工作压差、500 kN上顶力。

    2)采用不动管柱快速反洗井系统,解决了海上大斜度井施工过程中出现砂堵导致的反洗井困难等问题,确保了施工安全可靠。

    3)采用挤压循环充填一体化装置。针对国内外分层防砂管柱采用拖动内管方式实现挤压循环转换时施工过程复杂、施工风险高的问题,优化设计了柔性挤充转换工具,实现了原位挤压、循环充填工序转换。

    分层充填防砂管柱适用于ϕ177.8 mm生产套管,可实现2~4层分层充填防砂,层间封隔密封压力达到35 MPa,施工排量3~5 m3/min,最高砂比可达80%以上,留井管柱通径达98.0 mm,为后期下入分层采油管柱提供了空间。

    该技术利用机电一体化原理[18-24],采用电控方式在线调控井下流量阀。首先,将井下分层采油管柱下入留井分层防砂管柱内,利用自膨胀封隔器实现层间封隔,实现油层分层;其次,在地面利用生产管柱携带的信号电缆控制井下流量阀的开关,实现分层采油,生产过程中还可以根据需要调整井下流量阀的开度,从而调节对应油层的产液量,或直接关闭任一油层暂停生产,而单独生产另一油层,实现选择性换层(调节)采油。

    在线调节分层采油管柱主要由安全阀、过电缆封隔器、电动潜油泵机组、电动潜油泵加强装置、井下线缆分接器、测试仪、在线调节阀、开启滑套、分层膨胀封隔器及配套的安全接头和其他管柱辅助工具组成,如图2所示。

    图  2  电动潜油泵井分层采油管柱
    Figure  2.  Separate layer oil production pipe string of a well with electric submersible pump

    采用遇油遇水膨胀封隔器分隔不同生产层位,实现分层,上遇油遇水膨胀封隔器在防砂管柱以上位置;下遇油遇水膨胀封隔器及配套安全接头在防砂管柱内腔,便于起出采油管柱遇阻时采取措施。分层采油管柱下至设计位置后,无需加压坐封封隔器就能实现分层生产。

    安装在分层采油管柱上的井下在线调节阀可以调节不同层位液流通道大小,实现流量在线调节功能。调节时,地面测控系统硬件模块(控制箱)在地面通过信号电缆将控制指令发送给井下微型电机,通过井下微型电机调整井下流量阀的开度,并对操作过程进行记录和存储。

    1)采用遇油遇水膨胀封隔器进行分层,完井作业相关工具下至设计位置后无需加压坐封,施工工艺简便;

    2)采用在线电动调节阀,实现了单层液量通道的实时在线调节;

    3)管柱配套安全接头具有安全拔断功能,确保后期处理安全可靠;

    4)采用电动潜油泵加强装置,提高了电动潜油泵机组尾管的承重能力;

    5)采用液压式同心双管液控安全开启滑套,地面加压后油层与油套环空同时提供备用液流通道,确保管柱无隐患正常生产。

    分层采油管柱适用于ϕ177.8 mm生产套管,承压压力达到35 MPa,耐温达120 ℃,适用于井斜角不大于60°的油井。

    对于需要重新进行防砂的井,可以在防砂管柱中配套密插筒,利用密插密封方式分隔油层,实现分层采油。但大部分已防砂油井在检修电动潜油泵时由于底部防砂管柱下入时间短,仍然有效,无须重新防砂,因此研制了遇油遇水膨胀封隔器,以充分利用现有防砂管柱实现分层采油。

    遇油遇水膨胀胶筒封隔器主要由上接头、中心管、上挡帽、下挡帽和固定销钉等组成,如图3所示。

    图  3  遇油遇水膨胀封隔器的结构
    1.上接头;2.中心管;3.上挡帽;4.胶筒;5.分隔环;6.下挡帽
    Figure  3.  Structure of oil and water swelling packer

    油井实施分层采油时,可充分利用现有防砂管柱,在防砂管柱内上下层中间无节箍位置下入小型遇油遇水膨胀封隔器,生产后遇油遇水膨胀胶筒与井内液体充分接触,可自行膨胀,形成分层密封。

    采用遇油遇水膨胀封隔器分层时,封隔器不需加压坐封即可膨胀实现密封分层,施工工艺简单;遇油遇水膨胀胶筒与井内液体充分接触7 d即可达到要求的分隔效果。

    遇油遇水膨胀封隔器的技术参数见表1

    表  1  遇油遇水膨胀封隔器的技术参数
    Table  1.  Technical parameters of oil and water swelling packer
    型号最大外径/
    mm
    最小通径/
    mm
    额定压力/
    MPa
    连接螺纹坐封膨胀
    时间/d
    QHSF-70703825ϕ48.3 mm
    TBG
    7
    QHSF-1521527625ϕ88.9 mm
    TBG
    7
    下载: 导出CSV 
    | 显示表格

    在线电动调节阀主要由压环、上接头、连接头、电机管、电动机、转动轴、弹簧、外管、滑套、限位套、活塞、T形盘根和下接头等组成,如图4所示。

    图  4  在线电动调节阀的结构
    1.压环;2.上接头;3.连接头;4.电机管;5.电动机;6.转动轴;7.弹簧;8.外管;9.滑套;10.限位套;11.活塞;12.T形盘根;13.下接头
    Figure  4.  Structure of online electric regulating valve

    在线电动调节阀连接于分层采油管柱需控制产液量油层的位置,关闭生产油层时,地面控制仪发出控制信号,控制信号通过信号电缆输送至井下在线电动调节阀,控制井下在线电动调节阀电动机正反转动,电动机带动传动轴转动,限位套在传动轴转动过程中与滑套发生相对移动,同时带动活塞移动,活塞与滑套相互配合,实现在线电动调节阀连通与关闭状态的转换。电动机正转时,在线电动调节阀进行打开动作;电动机反转时,在线电动调节阀进行关闭动作。通过电动机正反旋转的圈数控制电动调节阀打开和关闭的程度。

    在线电动调节阀内部无复杂电路元器件,可靠性较高;其内部设计有限位防卡堵机构,活塞轴向运动到达全开或全关位置时不会发生卡堵现象;在线电动调节阀的开度可调,可根据实际需要调节,以改变对应油层的产液量。

    在线电动调节阀的最大外径139.0 mm,最小通径62.0 mm,额定压力25 MPa,连接螺纹为ϕ48.3 mmTBG,最高耐温125 ℃。

    在胜利埕岛油田埕北20C-A井进行了分层防砂试验,该井共钻遇油层33.60 m/12层,于2012年10月采用电动潜油泵投产,防砂方式为精密复合滤砂管循环充填防砂。2015年7月由于砂埋油层躺井,躺井前日产液量148 t,日产油量7.3 t,含水率95.1%。为提高不同油层的开发效果,采用大通径分层充填防砂管柱进行分层防砂,通过差异化充填防砂,改造近井地带的地层,释放油层潜能,同时提高近井地带渗流能力及挡砂屏障强度,以满足油井生产需求,延长防砂有效期。根据地质要求及测井解释结果,将8#、13#等5个小层(1 816.30~2 019.40 m井段)作为1个层(以下简称为下层)进行循环充填防砂,将6#、7#作为1个层(1 742.50~1 755.00 m井段)(以下简称为上层)进行挤压充填防砂。

    下层循环充填陶粒2.8 m3,上层挤压充填陶粒22.4 m3。分层防砂施工后3个月平均日产液量130 t,日产油量26 t,含水率80%,比分层防砂前日增油18.7 t,含水率降低15.1百分点,较大程度地发挥了各层的产能。分层防砂在海上油井的成功实施,验证了分层防砂技术的可靠性。

    此后,又在陆上2口井进行了分层采油试验。之所以选择在陆上油井进行现场试验,是为了降低试验成本。但选择的试验井(GO2-17-A井和GO4-19-B井),其所钻遇的储层与胜利海上疏松砂岩油藏储层物性相近,完井工具尺寸也相同。以GO4-19-A井为例介绍试验情况,其生产层位情况见表2

    表  2  GO4-19-A井生产层位
    Table  2.  Production layer of Well GO4-19-A
    层位油层井段/m砂体厚度/m有效厚度/m射开井段/m射孔厚度/m渗透率/mD
    321 297.20~1 301.404.204.001 297.20~1 301.404.201 116
    521 318.80~1 325.606.805.001 319.00~1 324.005.001 498
    下载: 导出CSV 
    | 显示表格

    该井2个生产层位的渗透率分别为1 116和1 498 mD,在该井进行分层采油和分层测试,验证电动潜油泵井分层采油技术的可行性。该井完井生产初期对52层进行了单采,日产液42.5 t,日产油0.5 t,含水率98.8%。52层单采完成后,关闭52层,对32层进行了单采,日产液量38.7 t,日产油量0.8 t,含水率97.9%。地面控制逐层单采生产,利用逐层单采生产资料,优化52层和32层的产液量,根据优化结果调节52层流量阀开度,将该层产液量控制在37.5 t,32层流量阀全部打开。优化后52层含水率由98.8%降至96.0%,32层含水率不变,两层分采合计日产油量2.3 t,比两层合采平均日增油1.0 t,取得了较好的控水增油效果。

    1)针对胜利海上疏松砂岩油藏现有笼统充填防砂不密实、防砂通径小的问题,研发了内通径为98.0 mm的分层充填防砂管柱,增大了防砂后的通径,实现了分层防砂,便于后期实施分层采油。

    2)研制了遇水遇油膨胀封隔器,其膨胀胶筒与井内液体充分接触后可自行膨胀,实现密封。

    3)研制了井下在线电动调节阀,通过地面控制仪控制井下在线电动调节阀的开度,调控油井各层段产液量。

    4)现场试验表明,采用分层防砂分层采油技术可解决层间矛盾,充分发挥各油层的作用,提高产油量,降低含水率。

  • 图  1   裂缝延伸方向与有利储集体展布方向相对位置

    Figure  1.   Relative orientation of the fracture extension direction and favorable reservoir distribution direction

    图  2   不同压裂液的流变性能

    Figure  2.   Rheological properties of different fracturing fluids

    图  3   交联酸体系的流变性能

    Figure  3.   Rheological property of the crosslinking acid system

    图  4   不同反应时间下自生酸浓度和反应温度的关系

    Figure  4.   Relation of concentration of autogenous acid and reaction temperature at different reaction times

    图  5   酸岩反应过程中酸浓度和反应时间的关系

    Figure  5.   Relation of acid concentration and reaction time during acid rock reaction

    图  6   不同注酸排量下动态缝长与注液量的关系

    Figure  6.   Relation of dynamic fracture length and injection volume under different injection rates

    图  7   前置液规模对裂缝温度场的影响

    Figure  7.   Influence of pad fluid scale on temperature field of fracture

    图  8   交联酸规模对酸液有效作用距离的影响

    Figure  8.   Influence of crosslinking acid scale on effective distance of acid

    图  9   自生酸规模对酸液有效作用距离的影响

    Figure  9.   Influence of autogenous acid scale on effective distance of acid

    图  10   S井大型酸压施工曲线

    Figure  10.   Fracturing curve for large-scale acid fracturing of Well S

    表  1   不同注压裂液排量下浅下管柱摩阻减小值

    Table  1   Friction reduction of shallow pipe string under different fracturing fluid injection rates

    排量/
    (m3·min-1
    ϕ88.9 mm油管摩阻系数/
    (MPa·m-1
    浅下管柱减小摩阻/
    MPa
    30.0032.4
    40.0053.8
    50.0075.3
    60.0086.2
    70.0139.9
    80.01511.5
    下载: 导出CSV
  • [1] 李映涛,漆立新,张哨楠,等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报,2019,40(12):1470–1484. doi: 10.7623/syxb201912006

    LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the middle and lower Ordovician fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470–1484. doi: 10.7623/syxb201912006

    [2] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347–355. doi: 10.11743/ogg20150301

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-Karst carbonate reservoirs in Tahe Area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301

    [3] 马庆佑,沙旭光,李玉兰,等. 塔中顺托果勒区块走滑断裂特征及控油作用[J]. 石油实验地质,2012,34(2):120–124. doi: 10.3969/j.issn.1001-6112.2012.02.003

    MA Qingyou, SHA Xuguang, LI Yulan, et al. Characteristics of strike-slip fault and its controlling on oil in Shuntuoguole Region, middle Tarim Basin[J]. Petroleum Geology and Experiment, 2012, 34(2): 120–124. doi: 10.3969/j.issn.1001-6112.2012.02.003

    [4] 李相文,冯许魁,刘永雷,等. 塔中地区奥陶系走滑断裂体系解剖及其控储控藏特征分析[J]. 石油物探,2018,57(5):764–774. doi: 10.3969/j.issn.1000-1441.2018.05.016

    LI Xiangwen, FENG Xukui, LIU Yonglei, et al. Characteristic of the strike-slip faults system and effect of faults on reservoir and hydrocarbon accumulation in Tazhong Area, China[J]. Geophysical Prospecting for Petroleum, 2018, 57(5): 764–774. doi: 10.3969/j.issn.1000-1441.2018.05.016

    [5] 刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    [6] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069

    [7] 方俊伟,董晓强,李雄,等. 顺北油田断溶体储集层特征及损害预防[J]. 新疆石油地质,2021,42(2):201–205.

    FANG Junwei, DONG Xiaoqiang, LI Xiong, et al. Characteristics and damage prevention of fault-karst reservoirs in Shunbei Oil-field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 201–205.

    [8] 马乃拜,金圣林,杨瑞召,等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探,2019,54(2):398–403.

    MA Naibai, JIN Shenglin, YANG Ruizhao, et al. Seismic response characteristics and identification of fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2): 398–403.

    [9] 李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93. doi: 10.11911/syztjs.2020074

    LI Xinyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93. doi: 10.11911/syztjs.2020074

    [10] 张文彪,段太忠,李蒙,等. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法[J]. 石油勘探与开发,2021,48(2):314–325.

    ZHANG Wenbiao, DUAN Taizhong, LI Meng, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 314–325.

    [11] 李冬梅,柳志翔,李林涛,等. 顺北超深断溶体油气藏完井技术[J]. 石油钻采工艺,2020,42(5):600–605.

    LI Dongmei, LIU Zhixiang, LI Lintao, et al. Well completion technologies for the ultra-deep fault-dissolved oil and gas reservoir in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2020, 42(5): 600–605.

    [12] 欧阳健,王贵文. 电测井地应力分析及评价[J]. 石油勘探与开发,2001,28(3):92–94. doi: 10.3321/j.issn:1000-0747.2001.03.028

    OUYANG Jian, WANG Guiwen. In-situ stress analysis and evaluation by using of electric logging[J]. Petroleum Exploration and Development, 2001, 28(3): 92–94. doi: 10.3321/j.issn:1000-0747.2001.03.028

    [13] 赵旭阳,郭海敏,李紫璇,等. 基于测井横波预测的地应力场及岩石力学参数建模[J]. 断块油气田,2021,28(2):235–240.

    ZHAO Xuyang, GUO Haimin, LI Zixuan, et al. Modeling of in-situ stress field and rock mechanics parameters based on logging shear wave prediction[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 235–240.

    [14] 王洋,赵兵,袁清芸,等. 顺9井区致密油藏水平井一体化开发技术[J]. 石油钻探技术,2015,43(4):48–52.

    WANG Yang, ZHAO Bing, YUAN Qingyun, et al. Integrated techniques in tight reservoir development for horizontal wells in Block Shun 9[J]. Petroleum Drilling Techniques, 2015, 43(4): 48–52.

    [15] 曲海,李根生,刘营. 拖动式水力喷射分段压裂工艺在筛管水平井完井中的应用[J]. 石油钻探技术,2012,40(3):83–86. doi: 10.3969/j.issn.1001-0890.2012.03.017

    QU Hai, LI Gensheng, LIU Ying. The application of dragged multi-stage hydrojet-fracturing in horizontal well with screen pipe completion[J]. Petroleum Drilling Techniques, 2012, 40(3): 83–86. doi: 10.3969/j.issn.1001-0890.2012.03.017

    [16] 李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018

    [17] 张雄,耿宇迪,焦克波,等. 塔河油田碳酸盐岩油藏水平井暂堵分段酸压技术[J]. 石油钻探技术,2016,44(4):82–87.

    ZHANG Xiong, GENG Yudi, JIAO Kebo, et al. The technology of multi-stage acid fracturing in horizontal well for carbonate reservoir by temporary plugging ways in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 82–87.

    [18] 曾凡辉,郭建春,赵金洲. 酸损伤降低砂岩储层破裂压力实验研究[J]. 西南石油大学学报(自然科学版),2009,31(6):93–96.

    ZENG Fanhui, GUO Jianchun, ZHAO Jinzhou. The experiment research of acid damage to reduce sandstone reservoirs fracture pressure[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(6): 93–96.

    [19] 王松,邓宽海,于会永,等. 玛湖凹陷百口泉组砾岩储层泡酸后岩石损伤及压裂泵压下降机理[J]. 科学技术与工程,2021,21(21):8841–8850.

    WANG Song, DENG Kuanhai, YU Huiyong, et al. Rock damage and fracturing pump pressure reduction mechanism of conglomerate reservoirs in Baikouquan Formation of Mahu Sag after acidizing treatment[J]. Science Technology and Engineering, 2021, 21(21): 8841–8850.

    [20] 郭建春,苟波,秦楠,等. 深层碳酸盐岩储层改造理念的革新:立体酸压技术[J]. 天然气工业,2020,40(2):61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007

    GUO Jianchun, GOU Bo, QIN Nan, et al. An innovative concept on deep carbonate reservoir stimulation: three-dimensional acid fracturing technology[J]. Natural Gas Industry, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007

    [21] 苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006

    SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006

  • 期刊类型引用(10)

    1. 肖春燕,王犁,杨彪,王磊,鲁红升. 高强度可固化水溶性树脂封堵剂的制备及性能评价. 化学研究与应用. 2024(01): 151-156 . 百度学术
    2. 王猛,高其宇,郭田超. 一种油气田用耐高温凝胶调堵剂制备及性能研究. 粘接. 2024(03): 53-56 . 百度学术
    3. 张建亮,宋宏志,张卫行,戎凯旋,李毓,潘玉萍. 海上特超稠油油藏小井距蒸汽吞吐汽窜堵调工艺. 石油钻采工艺. 2024(02): 199-207 . 百度学术
    4. 孙玉豹,张兆年,吴春洲,王少华,陈立峰,邓俊辉. 稠油热采可降解封窜剂的制备及性能评价. 石油化工. 2023(02): 216-222 . 百度学术
    5. 周剑峰,杨涛,张菁燕,周文平,高璇. 早期水热养护对铝酸钙水泥结构稳定性的影响. 硅酸盐通报. 2023(03): 802-807+826 . 百度学术
    6. 陶建强. 边底水超稠油油藏改性石墨烯封堵技术的研究与应用. 精细石油化工. 2023(03): 9-12 . 百度学术
    7. 杨光,谢兴华,谢强,王学锐,李子玉. 油田封堵专用铝热剂的制备与性能研究. 爆破器材. 2023(04): 44-50 . 百度学术
    8. 尹家峰,王晓军,鲁政权,步文洋,孙磊,景烨琦,孙云超,闻丽. 辽河大民屯凹陷页岩油储层强封堵恒流变油基钻井液技术. 特种油气藏. 2023(04): 163-168 . 百度学术
    9. 徐庆,李达,张德龙,李景伟. 大庆稠油耐高温起泡复配体系室内评价研究. 长江大学学报(自然科学版). 2023(06): 84-92 . 百度学术
    10. 丁建新,席岩,蒋记伟,王海涛,李雪松,李辉. 高温及超高温下水泥石力学及孔渗特性变化规律. 钻井液与完井液. 2022(06): 754-760 . 百度学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  226
  • PDF下载量:  79
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-12-20
  • 修回日期:  2021-09-12
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-04-05

目录

/

返回文章
返回