Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing
-
摘要: 粉砂在致密储层体积压裂中的作用尚未明确,其在裂缝前端的分布规律仍不清楚。为此,建立了利用动态滤失分析仪评价体积压裂裂缝(文中简写为“体积裂缝”)前端粉砂分布情况的模拟试验方法,在描述缝面形貌的基础上研究了粉砂的分布规律及影响因素。试验发现,携砂液在体积裂缝中逐渐滤失,滤失达到平衡后滞留在缝端的粉砂其分布差异很大;同时,随着滤失时间增长缝内压力逐渐升高,后达到稳定状态。最长运移距离和稳定压力能合理表征粉砂在裂缝前端的分布特征。缝端开度增大、缝面粗糙度减小、压裂液黏度升高,粉砂最长运移距离增加;粉砂粒度越小,最长运移距离越大。缝端开度越小、缝面粗糙度越大、黏度越高、粉砂粒度越小,缝内稳定压力越高。研究结果表明,压裂施工时添加粉砂能够封堵裂缝前端,提高缝内压力,抑制裂缝在某一方向过快增长,增加缝网复杂度。Abstract: The role of silt in volume fracturing of tight reservoirs is not yet clear, and so it is with its distribution law at the front end of the fracture. For this reason, a dynamic fluid loss analysis device was used to establish a simulation test method for the distribution of silt sand at the front end of volume fracturing fractures (hereinafter referred as “volume fractures”), and the distribution law and influencing factors of silt were studied on the basis of fracture surface morphology description. It is found by experiments that the sand-carrying fluid was gradually lost in the volume fractures, and the distribution of silt retained at the fracture front end was largely distinct after the fluid loss reached equilibrium. Meanwhile, the pressure in the fractures was gradually elevated and then became stable as the fluid loss continued. The distribution of silt at the front end of fractures can be reasonably characterized by the maximum transport distance and stable pressure. The maximum transport distance increases with widening aperture of the fracture front end, lowering roughness of fracture surfaces, and increasing fracturing fluid viscosity. Small particle size of silt also increases the maximum transport distance. In addition, the stable pressure in the fractures increases as the aperture of fracture front end decreases, the roughness of fracture surfaces increases, the fracturing fluid viscosity increases, and the particle size of silt decreases. The results demonstrate the addition of silt during fracturing can raise the pressure in fractures after plugging their front ends and restrain the fractures from growing too fast in a certain direction, thereby increasing the complexity of the fracture network.
-
Keywords:
- tight reservoir /
- volume fracturing /
- silt /
- plugging /
- fracture aperture /
- pressure in fracture /
- transport distance
-
-
-
[1] 杜开元, 段国斌, 徐刚, 等.深层页岩气井压裂加砂工艺优化的微地震评价[J].石油地球物理勘探, 2018, 53(增刊2): 148–155. DU Kaiyuan, DUAN Guobin, XU Gang, et al. Micro-seismic evaluation of fracturing and sand adding technology optimization in deep shale gas wells[J]. Petroleum Geophysical Explorating, 2018, 53(supplement 2): 148–155.
[2] SHAKEEL M, ABDULRAZZAQ W, ABDULLATIF O, et al. Detailed comparison of processed sand vs. unprocessed sand vs. high-strength proppant for fracturing applications[R]. SPE 194924, 2019.
[3] 张国亮,兰中孝,刘鹏. 大庆探区深层火山岩气藏压裂施工控制[J]. 石油勘探与开发,2009,36(4):529–534. doi: 10.3321/j.issn:1000-0747.2009.04.020 ZHANG Guoliang, LAN Zhongxiao, LIU Peng. Fracturing control method for deep volcanic rock gas reservoirs in Daqing exploration area[J]. Petroleum Exploration and Development, 2009, 36(4): 529–534. doi: 10.3321/j.issn:1000-0747.2009.04.020
[4] KERN L R, PERKINS T K, WYANT R E. The mechanics of sand movement in fracturing[J]. JPT, 1959, 11(7): 55–57. doi: 10.2118/1108-G
[5] SAHAI R, MISKIMINS J L, OLSON K E. Laboratory results of proppant transport in complex fracture systems[R]. SPE 168579, 2014.
[6] KIM J Y, JING Z, MORITA N. Proppant transport studies using three types of fracture slot equipment[R]. ARMA-2019-0273, 2019.
[7] 温庆志,杨英涛,王峰,等. 新型通道压裂支撑剂铺置试验[J]. 中国石油大学学报(自然科学版),2016,40(5):112–117. WEN Qingzhi, YANG Yingtao, WANG Feng, et al. Experimental study on an innovative proppant placement method for channel fracturing technique[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(5): 112–117.
[8] 狄伟. 支撑剂在裂缝中的运移规律及铺置特征[J]. 断块油气田,2019,26(3):355–359. DI Wei. Migration law and placement characteristics of proppant in fracture[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 355–359.
[9] 潘林华,张烨,王海波,等. 页岩复杂裂缝支撑剂分流机制[J]. 中国石油大学学报(自然科学版),2020,44(1):61–70. PAN Linhua, ZHANG Ye, WANG Haibo, et al. Mechanism study on proppants diversion during shale complex fracturing of shale rocks[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(1): 61–70.
[10] 张矿生,张同伍,吴顺林,等. 不同粒径组合支撑剂在裂缝中运移规律模拟[J]. 油气藏评价与开发,2019,9(6):72–77. doi: 10.3969/j.issn.2095-1426.2019.06.013 ZHANG Kuangsheng, ZHANG Tongwu, WU Shunlin, et al. Simulation of proppant transport in fracture with different combinations of particle size[J]. Reservoir Evaluation and Development, 2019, 9(6): 72–77. doi: 10.3969/j.issn.2095-1426.2019.06.013
[11] 潘林华,张烨,程礼军,等. 页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律[J]. 天然气工业,2018,38(5):61–70. doi: 10.3787/j.issn.1000-0976.2018.05.007 PAN Linhua, ZHANG Ye, CHENG Lijun, et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry, 2018, 38(5): 61–70. doi: 10.3787/j.issn.1000-0976.2018.05.007
[12] 李栋,牟建业,姚茂堂,等. 裂缝型储层酸压暂堵材料实验研究[J]. 科学技术与工程,2016,16(2):158–164. doi: 10.3969/j.issn.1671-1815.2016.02.031 LI Dong, MOU Jianye, YAO Maotang, et al. Experimental study of temporary plugging materials to acid fracturing in fractured carbonate reservoir[J]. Science Technology and Engineering, 2016, 16(2): 158–164. doi: 10.3969/j.issn.1671-1815.2016.02.031
[13] 徐传奇,李海燕,张小锋,等. 纳米封堵剂性能评价及机理分析[J]. 钻采工艺,2019,42(2):100–103. XU Chuanqi, LI Haiyan, ZHANG Xiaofeng, et al. Performance evaluation for new type nano plugging agents and its mechanism analysis[J]. Drilling & Production Technology, 2019, 42(2): 100–103.
[14] 李丹,伊向艺,王彦龙,等. 压裂用纳米体膨颗粒裂缝封堵性能实验研究[J]. 钻井液与完井液,2017,34(4):112–116. doi: 10.3969/j.issn.1001-5620.2017.04.021 LI Dan, YI Xiangyi, WANG Yanlong, et al. Experimental study on fracture plugging performance of volumetric expansion nano particles used in well fracturing[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 112–116. doi: 10.3969/j.issn.1001-5620.2017.04.021
[15] 李志勇,杨超,马攀,等. 高温堵漏凝胶性能评价系统[J]. 钻井液与完井液,2015,32(2):52–54. doi: 10.3969/j.issn.1001-5620.2015.02.013 LI Zhiyong, YANG Chao, MA Pan, et al. Instrument for high temperature gel LCM evaluation[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 52–54. doi: 10.3969/j.issn.1001-5620.2015.02.013
[16] VAN OORT E, FRIEDHEIM J E, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening well-bores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.
[17] ZHANG Zhuo, MAO Shaowen, ZHAO Heqian, et al. Simulation of proppant transport in field-scale curved fractures[R]. URTEC-2020-3070-MS, 2020.
[18] GERI M B, IMQAM A, DUNN-NORMAN S. Proppant transport behavior in inclined versus vertical hydraulic fractures: an experimental study[R]. SPE 191813, 2018.
[19] BLYTON C A, GALA D P, SHARMA M M. A study of proppant transport with fluid flow in a hydraulic fracture[J]. SPE Drilling & Completion, 2018, 33(4): 307–323.
[20] 李玉梅,吕炜,宋杰,等. 层理性页岩气储层复杂网络裂缝数值模拟研究[J]. 石油钻探技术,2016,44(4):108–113. LI Yumei, LYU Wei, SONG Jie, et al. Numerical simulation study on the complex network fractures of stratified shale gas reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108–113.
-
期刊类型引用(7)
1. 孟庆修,曹自成,丁文龙,杨德彬,马海陇,刁新东,王明,韩鹏远,王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律. 地学前缘. 2024(05): 247-262 . 百度学术
2. 韩刚,何峰,张孝珍,王立华,祝彦贺,雷克辉. 阵列声波测井在储层裂缝识别中的应用——以鄂尔多斯盆地K区为例. 油气地质与采收率. 2019(03): 63-69 . 百度学术
3. 黄玉欣,胡望水,尹帅. 基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法. 石油钻探技术. 2018(05): 115-120 . 本站查看
4. 周冬林,杨海军,李建君,王晓刚,汪会盟,薛雨. 盐岩地层地应力测试方法. 油气储运. 2017(12): 1385-1390 . 百度学术
5. 尹帅,丁文龙,李昂,赵金利,单钰铭. 裂缝对致密碎屑岩储层弹性影响的数值分析. 石油钻探技术. 2016(02): 112-118 . 本站查看
6. 尹帅,丁文龙,刘建军,王鹏,孙圆辉,曹翔宇,王兴华. 沁水盆地南部地区山西组煤系地层裂缝发育特征及其与含气性关系. 天然气地球科学. 2016(10): 1855-1868 . 百度学术
7. 张俊,周文,李双贵,单钰铭,尹帅,谢润成,郑莲慧. 高应力条件下膏泥岩动静态力学参数特征试验分析. 成都理工大学学报(自然科学版). 2015(06): 665-672 . 百度学术
其他类型引用(2)