带旋转导向工具的底部钻具组合横向振动特性研究

狄勤丰, 芮子翔, 周星, 冯大军, 王文昌, 陈锋

狄勤丰, 芮子翔, 周星, 冯大军, 王文昌, 陈锋. 带旋转导向工具的底部钻具组合横向振动特性研究[J]. 石油钻探技术, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059
引用本文: 狄勤丰, 芮子翔, 周星, 冯大军, 王文昌, 陈锋. 带旋转导向工具的底部钻具组合横向振动特性研究[J]. 石油钻探技术, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059
DI Qinfeng, RUI Zixiang, ZHOU Xing, FENG Dajun, WANG Wenchang, CHEN Feng. Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059
Citation: DI Qinfeng, RUI Zixiang, ZHOU Xing, FENG Dajun, WANG Wenchang, CHEN Feng. Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059

带旋转导向工具的底部钻具组合横向振动特性研究

基金项目: 国家自然科学基金(石油化工联合基金(B类))重点项目“超深井钻柱非线性动力学及动态安全性基础理论研究”(编号:U1663205)、国家自然科学基金青年基金项目“气体钻井中预弯底部钻具组合控斜的非线性动力学机制”(编号:51704191)联合资助
详细信息
    作者简介:

    狄勤丰(1963—),男,江苏溧阳人,1984年毕业于华东石油学院钻井工程专业,1997年获西南石油学院油气井工程专业博士学位,教授,博士生导师,主要从事石油工程中的力学问题研究。系本刊编委。E-mail:qinfengd@sina.com

  • 中图分类号: TE21

Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool

  • 摘要: 为了提高旋转导向工具的井眼轨迹控制效果及作业安全性,研究了带静态推靠式旋转导向工具底部钻具组合(RSBHA)的横向振动特征。静态推靠式旋转导向工具通过控制3个导向翼肋的驱动压力实现井眼轨迹控制,可以将其等效为偏心距和偏心方位角已知的偏心稳定器;建立RSBHA的三维小挠度静力学模型,基于加权余量法确定RSBHA在钻压作用和井壁约束下的空间构形,获得上切点的位置;以上切点到钻头的距离作为横向振动的有效长度建立有限元模型,利用振型叠加法求解RSBHA的横向振动响应,分析工作参数和结构参数对其横向振动的影响。算例结果发现:转速约为138 r/min时, RSBHA的动态位移在距钻头8.20,18.10,24.60和31.60 m处较大;钻压对RSBHA最大弯曲应力的影响较小;偏心距和偏心方位角对RSBHA横向振动特性的影响较大,对于某些特定的偏心距和偏心方位角,RSBHA最大弯曲应力会明显增加。研究结果表明,结构参数和工作参数对RSBHA的横向振动影响较大,应对其进行优化设计,以确保旋转导向工具的应用效果和钻井作业安全。
    Abstract: To improve the borehole trajectory control effect and operation safety of rotary steerable tools, the analysis of the lateral vibration characteristics of rotary steerable bottom hole assembly (RSBHA) was conducted. A static push-the-bit rotary steerable tool can control borehole trajectories through its driving force produced from its three pads, and thus it can be regarded as an eccentric stabilizer with known eccentricity and eccentric azimuth. In this work, a three-dimensional statics model of RSBHA with small deflection was constructed to determine the spatial configuration of RSBHA under the weight on bit and the constraints of borehole wall by the weighted residual method, and thus to obtain the upper tangential point. Then, a finite element model was built, taking the distance between the upper tangential point and the bit as the effective length for lateral vibration. The lateral vibration responses of RSBHA could be elicited using the mode superposition method, and analysis of the influence of working and structural parameters on its lateral vibration could be made. The calculation results showed that when the rotary speed was around 138 r/min, the dynamic displacement of RSBHA was greater in the distances of 8.20 m, 18.10 m, 24.60 m, and 31.60 m away from the bit. The weight on bit had little impact on the maximum bending stress of RSBHA, while the eccentricity and eccentric azimuth had a greater impact on the lateral vibration characteristics, and the maximum bending stress would obviously increase for certain eccentricity and eccentric azimuth. The research shows that working and structural parameters have great influence on the lateral vibration of RSBHA, which should be optimized to ensure the proper application and operation safety of rotary steerable tools.
  • 图  1   RSBHA结构示意

    Figure  1.   Structure of RSBHA

    图  2   偏心距与偏心方位角

    Figure  2.   Eccentricity and eccentric azimuth

    图  3   斜直井眼中RSBHA的静态构形

    Figure  3.   Static configuration of RSBHA in a slant hole

    图  4   斜直井眼中RSBHA前5阶固有振型

    Figure  4.   First five order natural modes of RSBHA in a slant hole

    图  5   斜直井眼中RSBHA的二维动态位移响应

    Figure  5.   2D dynamic displacement response of RSBHA in a slant hole

    图  6   斜直井眼中RSBHA的三维动态位移响应

    Figure  6.   3D dynamic displacement response of RSBHA in a slant hole

    图  7   斜直井眼中RSBHA的危险系数云图

    Figure  7.   Risk coefficient of RSBHA in a slant hole

    图  8   井眼曲率为3.0°/30m时RSBHA的静态构形

    Figure  8.   Static configuration of RSBHA at a hole curvature of 3.0°/30m

    图  9   井眼曲率为3.0°/30m时的RSBHA动态位移响应

    Figure  9.   Dynamic displacement response of RSBHA at a hole curvature of 3.0°/30m

    图  10   井眼曲率为3°/30m时RSBHA的危险系数

    Figure  10.   Risk coefficient of RSBHA at a hole curvature of 3.0°/30m

    图  11   偏心距对RSBHA固有频率的影响

    Figure  11.   Effect of eccentricity on the natural frequency of RSBHA

    图  12   偏心距对RSBHA最大弯曲应力的影响

    Figure  12.   Effect of eccentricity on the maximum bending stress of RSBHA

    图  13   偏心方位角对RSBHA各阶固有频率的影响

    Figure  13.   Effect of eccentric azimuth on each natural frequency of RSBHA

    图  14   偏心方位角对RSBHA最大弯曲应力的影响

    Figure  14.   Effect of eccentric azimuth on the maximum bending stress of RSBHA

  • [1] 王植锐,王俊良. 国外旋转导向技术的发展及国内现状[J]. 钻采工艺,2018,41(2):37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11

    WANG Zhirui, WANG Junliang. Development of rotary steering technology in foreign countries and its status quo in China[J]. Drilling & Production Technology, 2018, 41(2): 37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11

    [2] 郑锋辉,韩来聚,杨利,等. 国内外新兴钻井技术发展现状[J]. 石油钻探技术,2008,36(4):5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002

    ZHENG Fenghui, HAN Laiju, YANG Li, et al. Development of novel drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002

    [3] 狄勤丰. 旋转导向井下闭环钻井技术[M]. 西安: 陕西科学技术出版社, 1999.

    DI Qinfeng. Rotary closed-loop drilling technology[M]. Xi’an: Shaanxi Science & Technology Press, 1999.

    [4] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001

    [5] 狄勤丰,赵业荣. 导向钻具组合动力学方程建立及传递函数求解[J]. 石油学报,2000,21(4):87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016

    DI Qinfeng, ZHAO Yerong. The establishing of dynamics equations and the transfer functions of the steering assembly of the downhole closed-loop drilling system[J]. Acta Petrolei Sinica, 2000, 21(4): 87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016

    [6] 李军,李东春,张辉,等. 推靠式旋转导向工具造斜能力影响因素[J]. 石油钻采工艺,2019,41(4):460–466.

    LI Jun, LI Dongchun, ZHANG Hui, et al. The influencing factors of the inclination ability of push-the-bit rotary guiding tool[J]. Oil Drilling & Production Technology, 2019, 41(4): 460–466.

    [7] 刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术,2018,46(6):59–64.

    LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(6): 59–64.

    [8] 徐天文,杨峰,赵建国. AutoTrack旋转导向工具现场应用分析[J]. 西部探矿工程,2016,28(6):11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004

    XU Tianwen, YANG Feng, ZHAO Jianguo. Analysis on the field application of AutoTrack rotary steering tool[J]. West-China Exploration Engineering, 2016, 28(6): 11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004

    [9] 史玉才,滕志想,白璟,等. 改进的静态推靠式旋转导向钻具组合力学模型[J]. 中国石油大学学报(自然科学版),2018,42(5):75–80.

    SHI Yucai, TENG Zhixiang, BAI Jing, et al. Improved mechanical model of the static push-the-bit rotary steerable bottom-hole assembly[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(5): 75–80.

    [10] 王明杰,狄勤丰,王文昌,等. 柔性短节对RSBHA导向力特征的影响分析[J]. 钻采工艺,2012,35(1):52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16

    WANG Mingjie, DI Qinfeng, WANG Wenchang, et al. Affection of flex sub's position and length on the steering force of RSBHA[J]. Drilling & Production Technology, 2012, 35(1): 52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16

    [11] 王恒,管志川,史玉才,等. 柔性短节对推靠式旋转导向底部钻具组合造斜能力的影响分析[J]. 钻采工艺,2018,41(6):19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06

    WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Effects of flex sub on build-up performance of push-the-bit RSBHA[J]. Drilling & Production Technology, 2018, 41(6): 19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06

    [12] 彭勇,闫文辉,李继博. 旋转导向钻井工具导向力优化设计[J]. 石油钻探技术,2006,34(2):10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003

    PENG Yong, YAN Wenhui, LI Jibo. The optimal design of the steering force for the rotary steerable drilling Tool[J]. Petroleum Drilling Techniques, 2006, 34(2): 10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003

    [13] 狄勤丰,王明杰,胡以宝,等. 柔性短节位置对带旋转导向工具底部钻具组合动力学特性的影响[J]. 中国石油大学学报(自然科学版),2012,36(5):84–88.

    DI Qinfeng, WANG Mingjie, HU Yibao, et al. Effect of flex sub's position on Bottom hole assembly with rotary steering tool[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 84–88.

    [14]

    BURGESS T M, MCDANIEL G L, DAS P K. Improving BHA tool reliability with drillstring vibration models: field experience and limitations[R]. SPE 16109, 1987.

    [15]

    DYKSTRA M W. Nonlinear drill string dynamics[D]. Tulsa: The University of Tulsa, 1996.

    [16] 张鹤,狄勤丰,覃光煦,等. 预弯底部钻具组合横向振动响应的快速求解[J]. 石油学报,2017,38(12):1441–1447. doi: 10.7623/syxb201712012

    ZHANG He, DI Qinfeng, QIN Guangxu, et al. Quick solution method for lateral vibration response of Pre-bent bottom-hole assembly[J]. Acta Petrolei Sinica, 2017, 38(12): 1441–1447. doi: 10.7623/syxb201712012

    [17] 李子丰. 油气井杆管柱力学及应用[M]. 北京: 石油工业出版社, 2008: 133–140.

    LI Zifeng. Tubular mechanics in oil-gas wells and its applications[M]. Beijing: Petroleum Industry Press, 2008: 133–140.

    [18] 狄勤丰,周凤岐,赵业荣. 带可控偏心稳定器的下部钻具组合力学特性计算分析[J]. 石油钻采工艺,1999,21(4):7–11, 113.

    DI Qinfeng, ZHOU Fengqi, ZHAO Yerong. Analysis of mechanical features for low drill assembly with controllable eccentric stabilizer[J]. Oil Drilling & Production Technology, 1999, 21(4): 7–11, 113.

    [19] 李茂生,闫相祯,高德利. 钻井液对钻柱横向振动固有频率的影响[J]. 石油大学学报(自然科学版),2004,28(6):68–71.

    LI Maosheng, YAN Xiangzhen, GAO Deli. Influence of drilling fluid on natural frequency of drill string lateral vibration[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2004, 28(6): 68–71.

    [20]

    KHULIEF Y A, Al-SULAIMAN F A, BASHMAL S. Vibration analysis of drillstrings with self-excited stick-slip oscillations[J]. Journal of Sound and Vibration, 2007, 299(3): 540–558. doi: 10.1016/j.jsv.2006.06.065

    [21]

    CAUGHEY T K, O'KELLY M E J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, 1965, 32(3): 583–588. doi: 10.1115/1.3627262

    [22]

    SPANOS P D, PAYNE M L. Advances in dynamic bottomhole assembly modeling and dynamic response determination[R]. SPE 23905, 1992.

图(14)
计量
  • 文章访问数:  722
  • HTML全文浏览量:  469
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-08-23
  • 刊出日期:  2021-11-24

目录

    /

    返回文章
    返回