Casing Program Optimization and Drilling Matching Technologies for Horizontal Wells in Sulige Gas Field
-
摘要: 苏里格气田致密气藏埋藏深,钻遇地层塌漏问题突出,机械钻速低,前期水平井采用三开井身结构,难以达到钻井持续提速和降低钻井成本的目的。为此,在开展缩短中完周期、优化封固段和井眼尺寸等方面的理论分析,并进行井身结构优化过渡性方案现场试验的基础上,提出了井身结构优化思路,分析了可行性;然后,进行了封固段优选、井眼尺寸优化,设计了水平井小井眼二开井身结构。基于此井身结构,研究了井眼轨迹控制、个性化钻头和配套提速工具优选、强抑制高效润滑钻井液分段措施优化等关键钻井配套技术。该技术在19口井进行了现场应用,解决了长裸眼段“塌漏同存,上漏下塌”的问题,提高了各井段的机械钻速,大幅度缩短了钻井周期。研究结果表明,小井眼二开井身结构设计合理,钻井配套技术提速效果显著,可在苏里格气田水平井钻井中推广应用。Abstract: The tight gas reservoirs in Sulige Gas Field are characterized by deep buried depth, prominent collapse and leakage of drilling strata, low rates of penetration (ROP). Thus, with the three-section casing program of early horizontal wells, it is difficult to continuously increase the ROP and reduce the drilling cost. In response, a theoretical analysis was carried out on reducing the intermediate completion cycles and optimizing the sealing section and the borehole size. And a transitional test of casing program optimization was performed. On these basis, ideas for casing program optimization were proposed and their feasibility was analyzed. The sealing section and the borehole sizes were optimized, and a two-section casing program was designed for slim boreholes in horizontal wells. The key drilling matching technologies were studied, including borehole trajectory control, optimization of customized drill bits and matching speed-up tools, and segmentation measure optimization for drilling fluids with strong inhibition and high-efficiency lubrication. The field application proved that the proposed technologies had a good application effect and they solved the “collapse and leakage coexist, with leakage above and collapse below” problems in long openhole sections. The ROP in each section was improved, and the drilling cycle was greatly shortened. The application suggests that the two-section casing program for slim boreholes is reasonable, and the drilling matching technologies dramatically increase the ROP and therefore can be applied in horizontal well drilling in Sulige Gas Field.
-
Keywords:
- horizontal well /
- casing program /
- drilling /
- penetration rate /
- drilling fluid /
- lubricity /
- Sulige Gas Field
-
西湖凹陷位于东海陆架盆地浙东坳陷东部,面积约5.9×104 km2,新生代地层最大沉积厚度超过1.0×104 m,主要目的层为古近系平湖组和花港组地层。储层岩性以长石砂岩和岩屑砂岩为主,埋深一般大于3 500.00 m,受压实成岩作用影响,储层物性一般偏低,孔隙度多在15%以下,渗透率一般小于10 mD。低孔低渗储层的流体性质识别一直是西湖凹陷油气勘探开发中的难题之一[1–3],原因是储层束缚水含量高、电阻率对比度低,同时受储层孔隙结构影响,水层的电阻率往往也较高,通过电性判别难度较大[4–6];另外,低孔低渗储层毛细管水含量高,当生产压差增大到一定数值后,一部分束缚水往往会转化为可动水,导致生产出水,影响油气产量,特别是气层一旦出水将严重影响最终的采收率,降低油气田开发的经济性[7–10]。针对上述问题,笔者利用油基钻井液的高侵特性,基于时移测井理念[11–12],提出时移电阻率测井对比识别法,即通过对比随钻实时电阻率与复测电阻率的差异快速识别流体性质,并在西湖凹陷低孔低渗储层进行了现场应用,验证了其可行性和有效性。
1. 油基钻井液滤失性试验
西湖凹陷低孔低渗储层钻井使用的油基钻井液主要成分为白油,根据实际需要,其含量约占钻井液总体积的70%~85%,其余成分为水和各种添加剂,主要起乳化、降滤失和封堵作用。虽然油基钻井液比水基钻井液具有更好的井壁稳定和储层保护作用,但仍具有一定的侵入特性。为了分析油基钻井液的滤失特征,利用具有低孔低渗特征的人造岩心进行了滤失性试验,岩心参数见表1。
表 1 油基钻井液滤失性试验所用岩心的主要参数Table 1. Core parameters of oil-based drilling fluid filtration test编号 长度/cm 直径/cm 渗透率/mD 钻井液密度/(kg·L–1) 1 7.39 2.49 199 1.18 2 7.34 2.53 198 1.32 将岩心放入夹持器内,逐渐加压至13 MPa,并持续24 h,测量滤失量、滤饼厚度和滤液侵入深度。试验结果为:1号岩心滤饼厚4.0 mm,滤液侵入深度为 3.5 cm;2号岩心滤饼厚5.0 mm;滤液侵入深度为6.5 cm;滤失量与侵入时间的关系如图1所示。
从图1可以看出,油基钻井液存在一定的滤失性,滤液能够侵入岩心,滤失量与岩心物性、压差和时间都有一定的关系。这是因为,油基钻井液滤液侵入地层后,会对储层中原有流体产生一定的驱替作用,导致储层电性特征变化,所以可通过对比储层电性特征变化情况分析判断储层流体的性质。
2. 时移电阻率测井对比识别法原理
地层刚钻开时,油基钻井液滤液侵入量小,滤饼薄,冲洗带和过渡带较窄;钻开一段时间后,滤饼增厚,冲洗带和过渡带宽度增大[13],如图2所示。所以,刚钻开地层进行随钻电阻率测井时,该电阻率一般可以代表地层真电阻率,即原状地层电阻率Rt;地层钻开一段时间后复测电阻率时,电阻率特别是探测深度较浅的电阻率(Rs)会包含冲洗带和过渡带的流体性质变化信息。对于水基钻井液,Rs相对于Rt增大或减小,取决于钻井液滤液矿化度和地层水矿化度的相对大小关系;但对于油基钻井液,由于钻井液滤液不导电,当地层水被驱替后,复测时电阻率Rs会变大,即复测Rs大于随钻测量Rs。时移电阻率测井对比识别法就是利用含有不同性质流体的储层被油基钻井液滤液驱替后、表现出不同的电性变化特征进行流体识别。
为了进一步说明时移电阻率测井对比识别法的技术原理,分别分析了探测深度与被探测地层电阻率的关系,以及油基钻井液滤液侵入不同地层后的电阻率变化特征。
首先用Schlumberger公司的ARC随钻电阻率测井仪(以下简称ARC测井仪)分析探测深度与被探测地层电阻率的关系。该仪器有5个源距(406.4,558.8,711.2,863.6和1 016.0 mm)的发射器,采用2种发射频率(400 kHz和2 MHz),所以可以获得20条电阻率曲线(10条相位电阻率和10条衰减电阻率)。其中,发射频率为2 MHz时,ARC测井仪探测深度与地层相位电阻率的关系曲线如图3所示。
由图3可知,P16H(源距为406.4 mm,频率为2 MHz的相位电阻率)探测深度最小,但其探测深度与地层电阻率相关,电阻率越高,探测深度越大。由于油基钻井液滤液侵入深度小,所以可以利用P16H电阻率的变化率分析侵入深度。
然后分析油基钻井液滤液分别侵入油气层、水层、含油气水层和干层后,冲洗带电阻率的变化情况。对于油气层,油气和油基钻井液滤液都是不导电的流体介质,油基滤液侵入地层后,地层电阻率基本不变;对于水层、含油气水层或同层,油基钻井液滤液侵入后会减小导电流体(水)的体积,导致储层的电阻率升高。实际复测时,同时测量砂岩储层及上下泥质围岩的电阻率,由于泥岩为非渗透性层,所以随钻实时电阻率和复测电阻率保持一致,通过使围岩电阻率重合,就可以确定砂岩储层电阻率的变化。钻井液滤液的侵入深度与储层物性、井筒过平衡压差、侵入时间及钻井液特性都有关系。例如,西湖凹陷某区域的典型低孔低渗储层,孔隙度为9%~18%,渗透率为1~50 mD,在较大正压差和较长完钻时间下的侵入深度一般较大。而致密层由于储层物性太差,滤液基本无侵入,所以地层电阻率基本不变。不同地层的具体变化特征见表2(其中,P16H实时,指P16H随钻实时电阻率;P16H复测,指P16H复测电阻率)。
表 2 油基钻井液滤液侵入不同地层后的电阻率变化特征Table 2. Characteristics of resistivity change after oil-based drilling fluid filtrate invaded different formations地层类型 钻井液滤液侵入情况 电阻率变化情况 ARC测井仪测量结果 油气层 一定压差下侵入 不变 P16H实时≈P16H复测 水层 一定压差下侵入 升高 P16H实时<P16H复测 含油气水层或同层 一定压差下侵入 升高 P16H实时<P16H复测 致密层 基本无侵入 不变 P16H实时≈P16H复测 3. 现场应用
时移电阻率测井对比识别法在西湖凹陷X1井和X2井进行了应用,均取得了成功,证明该方法可行且有效。
X1井4 450.00~4 475.00 m井段钻遇油气显示层,电阻率最高50 Ω·m,气测全量Tg最高12.0%,岩性为长石细砂岩,孔隙度为9%~11%,渗透率为1~5 mD,参照邻井信息,初步判断该层为气层。对该层进行了随钻电阻率复测,结果如图4所示。图4中,第五道“电阻率对比”指P16H随钻实时电阻率(P16H实时)与P16H复测电阻率(P16H 复测)的对比;P16H复测值大于P16H实时值(对应部分进行了蓝色充填),表明该层为非纯气层,存在一定量的可动水,或者说在该井钻井液过平衡压差约6.9 MPa的条件下,储层孔隙中的部分水可以流动。
X1井完钻后,在井深4 471.50 m处进行了电缆地层测试泵抽取样(MDT仪器),泵抽至45 min时,通过井下流体识别仪IFA开始观察到地层天然气流体,流线中的成分主要为天然气和油基钻井液;泵抽至160 min时,泵抽压差增大至4.13 MPa,流线出现了明显的地层水信号,说明在该压差下一部分毛细管水开始流动,转变为可动水。泵抽结束时,流线中水的体积比约为17%,该结果与电阻率复测分析结果完全一致(如图5所示)。这说明该层有一部分毛细管水在压差大于4.13 MPa时是可以流动的,可以称这部分水为弱束缚水;后续进行地层测试或开发时,生产压差应小于4.13 MPa,否则会导致地层出水,影响天然气产能。
X2井与X1井处于同一构造带,应用油基钻井液钻进。该井4 317.00~4 336.00 m井段钻遇油气显示层,岩性为长石细砂岩,孔隙度为10%~15%,渗透率为1~10 mD。储层上部电阻率约24 Ω·m,气测全量Tg最高约6.0%;储层下部电阻率为13 Ω·m,气测全量Tg约为2.8%。与邻区同层位油气层相比,该层整体电阻率较低,认为该层未达到纯油气层的标准,为此进行了电阻率随钻与复测对比,结果如图6所示。该井钻井液过平衡压差为7.13 MPa。图6中,第五道为P16H实时值和复测值的对比结果,可以看出井深4 330.00 m以浅的P16H实时值与P16H复测值一致,说明该层不含可动水,为纯油气层;井深4 330.00 m以深的P16H复测值明显大于P16H实时值,说明该层含可动水,推测为气水同层。
完钻后,X2井在井深4 321.20和4 333.00 m处分别进行了MDT泵抽取样。井深4 321.20 m处泵抽压差约13.8 MPa,泵抽时间为115 min,证实为纯轻质油层,不含水;井深4 333.00 m处泵抽压差为18.3 MPa,泵抽时间为120 min,后期含水率为60%,证实为油水同层,流体性质识别具体情况如图7所示。该井的泵抽结果与电阻率复测对比分析结果完全一致,再次证明了该方法的可行性和有效性。
4. 结论与建议
1)油基钻井液滤液侵入地层后,对储层中原有流体有一定驱替作用,从而引起储层电性特征的变化,通过对比该变化情况,就能够对储层中原有流体性质进行分析判断。
2)低孔低渗储层岩性和孔隙结构复杂,仅仅依靠对比电阻率的高低或者邻区经验识别流体的性质很难得到准确的结果。油基钻井液条件下利用时移电阻率测井对比识别法,可以快速识别低孔低渗储层的流体性质,现场应用也验证了该方法具有较高的准确性。
3)时移电阻率测井对比识别法具有较好的通用性,只要使用随钻电阻率和油基钻井液均可进行借鉴,特别是对于一些新区探井,该方法能够快速识别流体性质,为后续作业选择提供指导,提高作业效率并节省成本。
-
表 1 不同尺寸钻头钻进1 000 m时的破岩能耗
Table 1 Rock breaking energy consumption for drilling 1 000 m with bits in different sizes
钻头外径/mm 理论破岩面积/mm2 机械比能/MPa 钻压/kN 转速/ (r·min–1) 扭矩/(kN·m) 机械钻速/(m·h–1) 破岩总体积/m3 消耗总能量/J 152.4 18 232.22 0.038 9 100 70 4.06 15 18.23 7 093.43 152.4 18 232.22 0.032 5 100 70 4.06 18 18.23 5 932.04 215.9 36 591.06 0.027 4 100 70 5.76 15 36.59 10 040.59 215.9 36 591.06 0.022 8 100 70 5.76 18 36.59 8 355.20 222.2 38 757.68 0.026 6 100 70 5.92 15 38.76 10 293.26 222.2 38 757.68 0.022 1 100 70 5.92 18 38.76 8 584.05 228.6 41 022.50 0.025 8 100 70 6.08 15 41.02 10 573.14 表 2 不同井身结构下的排量计算结果
Table 2 Flow rates calculated with different casing programs
井身结构 井筒容积/
m3井筒容积
增量/m3单井岩屑量/
m3岩屑增量/
m3三开 190.2 47.7 655.25 25.25 常规井眼二开(过渡) 248.0 105.5 946.50 316.50 小井眼二开(先导) 142.5 630.00 注:三开结构为ϕ346.0 mm×500 m/ϕ273.1 mm×500 m+(ϕ228.0 mm×2 200 m +ϕ215.9 mm×700 m)/ϕ177.8 mm×3 400 m+ϕ152.4 mm×1 500 m/ϕ114.3 mm×4 900 m;常规井眼二开(过渡)结构为ϕ346.0 mm×1 200 m/ϕ273.1 mm×1 200 m+ϕ215.9 mm×3 700 m/ϕ139.7 mm×4 900 m;小井眼二开(先导)结构为ϕ215.9 mm×2 600 m/ϕ177.8 mm×2 600 m+ϕ152.4 mm×2 300 m/ϕ114.3 mm×4 900 m。 表 3 靖50-21H2井的井身结构设计结果
Table 3 Casing program design for Well Jing50-21H2
开钻次序 钻头外径/mm 井深/m 套管外径/mm 套管下入层位 套管下深/m 水泥浆返高 导管 346.0 50 273.1 第四系 50 地面 一开 215.9 2 584 177.8 石千峰组 2 584 地面 二开 152.4 5 251 114.3 石盒子组 0~5 248 气层以上500 m 表 4 大功率螺杆与常规螺杆的参数对比
Table 4 Parameter comparison between high-power screwdrill and conventional screwdrill
钻具型号 外径/
mm排量/
(L·s–1)转速/
(r·min–1)工作压降/
MPa最大压降/
MPa输出扭矩/
(N·m)最大输出扭矩/
(N·m)输出功率/
kW7LZ172×1.5°(普通螺杆) 172.0 19.5~39.5 84~168 4.0 5.65 7 176 10 137 150 7LZ172×1.5°(等壁厚螺杆) 19.5~39.5 88~177 5.5 7.85 9 866 14 288 238 5LZ127×1.5°(普通螺杆) 127.0 10.7~21.5 140~280 4.0 5.65 2 344 3 312 87 7LZ127×1.5°(普通螺杆) 12.35~24.70 130~261 3.2 4.52 2 468 3 277 75 表 5 小井眼二开与典型三开井身结构完成井钻井技术指标对比
Table 5 Comparison of completion and drilling technical indexes between two-section casing program for slim boreholes and typical three-section casing program
井身结构 完井数/口 进尺/m 平均井深/m 钻井周期/d 中完周期/d 完井周期/d 机械钻速/(m·h–1) 小井眼二开 19 91 258 4 803 29.04 4.47 6.09 17.64 典型三开 34 164 442 4 715 42.93 9.93 6.28 12.62 -
[1] 李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002 LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002
[2] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺,2019,41(2):130–136. LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136.
[3] 刘小刚,赵少伟,马英文,等. 渤海油田定向井井身结构优化及应用[J]. 石油钻采工艺,2019,41(4):455–459. LIU Xiaogang, ZHAO Shaowei, MA Yingwen, et al. Optimization of the casing program of directional well and its application in the Bohai Oilfield[J]. Oil Drilling & Production Technology, 2019, 41(4): 455–459.
[4] 乐守群,王进杰,苏前荣,等. 涪陵页岩气田水平井井身结构优化设计[J]. 石油钻探技术,2017,45(1):17–20. LE Shouqun, WANG Jinjie, SU Qianrong, et al. The optimization of casing programs for horizontal wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(1): 17–20.
[5] 刘云芳. 平桥地区钻井复杂情况地层压力分析[J]. 江汉石油职工大学学报,2018,31(6):26–28. doi: 10.3969/j.issn.1009-301X.2018.06.007 LIU Yunfang. Formation pressure analysis of drilling complexity in Pingqiao Area[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2018, 31(6): 26–28. doi: 10.3969/j.issn.1009-301X.2018.06.007
[6] 刘阳, 邓建明, 崔国杰, 等. 渤中凹陷19-6构造地层压力随钻精确监测技术[J]. 石油钻采工艺, 2018, 40(增刊1): 125-128. LIU Yang, DENG Jianming, CUI Guojie, et al. Precise detection technology of formation pressure while drilling in BZ19-6 structure of Bozhong Sag[J]. Oil Drilling & Production Technology, 2018, 40(supplement 1): 125-128.
[7] 刘彪,张俊,王居贺,等. 顺北油田含侵入岩区域超深井安全高效钻井技术[J]. 石油钻采工艺,2020,42(2):138–142. LIU Biao, ZHANG Jun, WANG Juhe, et al. Technologies for the safe and efficient drilling of ultradeep wells in the areas with intrusive rocks in the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 138–142.
[8] 刘彪,潘丽娟,易浩,等. 顺北含辉绿岩超深井井身结构优化设计[J]. 石油钻采工艺,2016,38(3):296–301. LIU Biao, PAN Lijuan, YI Hao, et al. Casing program optimization of ultra-deep well with diabase reservoir in Shunbei Block[J]. Oil Drilling & Production Technology, 2016, 38(3): 296–301.
[9] 冯林,母亚军,杨代明,等. 马深1井二开大井眼优快钻井技术[J]. 石油钻采工艺,2016,38(5):577–582. FENG Lin, MU Yajun, YANG Daiming, et al. Big hole of second section of Well Mashen-1 optimized drilling technology[J]. Oil Drilling & Production Technology, 2016, 38(5): 577–582.
[10] 胡大梁,欧彪,何龙,等. 川西海相超深大斜度井井身结构优化及钻井配套技术[J]. 石油钻探技术,2020,48(3):22–28. doi: 10.11911/syztjs.2020053 HU Daliang, OU Biao, HE Long, et al. Casing program optimization and drilling matching technologies for marine ultra-deep highly deviated wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22–28. doi: 10.11911/syztjs.2020053
[11] 林四元,张杰,韩成,等. 东方气田浅部储层大位移水平井钻井关键技术[J]. 石油钻探技术,2019,47(5):17–21. LIN Siyuan, ZHANG Jie, HAN Cheng, et al. Key technology for horizontal well of extended reach drilling in the shallow reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17–21.
[12] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036 YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
[13] 路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术,2019,47(2):9–14. doi: 10.11911/syztjs.2019029 LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14. doi: 10.11911/syztjs.2019029
[14] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[15] 史配铭,肖春学,王建军. 苏里格南部气田大斜度井钻井技术[J]. 石油钻采工艺,2019,41(1):18–22. SHI Peiming, XIAO Chunxue, WANG Jianjun. Drilling technologies used for the highly deviated wells in Southern Sulige Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(1): 18–22.
[16] 聂云飞,朱渊,范萧,等. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术,2019,47(5):74–79. NIE Yunfei, ZHU Yuan, FAN Xiao, et al. Development and application of self-excited vortex control hydraulic oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74–79.
[17] 沈国兵,刘明国,晁文学,等. 涪陵页岩气田三维水平井井眼轨迹控制技术[J]. 石油钻探技术,2016,44(2):10–15. doi: 10.11911/syztjs.201602002 SHEN Guobing, LIU Mingguo, CHAO Wenxue, et al. 3D trajectory control technology for horizontal wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(2): 10–15. doi: 10.11911/syztjs.201602002
[18] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28–36. doi: 10.11911/syztjs.2020050 HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28–36. doi: 10.11911/syztjs.2020050
-
期刊类型引用(6)
1. 张浩,倪利平,罗刚,王雪亮,王亮. 油基钻井液侵入对核磁共振测井响应影响的实验研究. 科学技术与工程. 2023(12): 5013-5021 . 百度学术
2. 罗健,张国栋,胡文亮,魏晓晗,何玉春. 低渗储层泥浆侵入特征与时移电阻率测井评价. 海洋石油. 2022(02): 55-60+76 . 百度学术
3. 吴进波,陈鸣,孙殿强,王锋,周基恒. 随钻地层测试在大斜度井油基钻井液中的应用. 石油钻采工艺. 2022(02): 178-185 . 百度学术
4. 张志强,王猛,杨杰. 油基泥浆环境下储层电阻率动态剖面反演方法研究及应用. 石化技术. 2021(06): 116-117 . 百度学术
5. 李新,米金泰,张卫,姚金志,李三国. 井下随钻核磁共振流体分析装置设计与试验验证. 石油钻探技术. 2020(02): 130-134 . 本站查看
6. 邱小雪,戴家才,陈猛,程伊博. 基于VOF对低产积液气井流动特征的数值模拟. 断块油气田. 2020(05): 619-623 . 百度学术
其他类型引用(2)