Research on Gas-Charging Water Depths and Gas-Charging Rates of Dual-Gradient Drilling with Gas-Charging in Risers
-
摘要: 为确定隔水管充气双梯度钻井充气水深和充气速率,根据气液两相流漂移流理论,考虑气体流动过程中其体积受隔水管环空压力变化的影响,建立了隔水管环空压力计算微元模型,推导出了隔水管充气双梯度钻井充气速率计算模型,并利用现场试验数据验证了模型计算结果的准确性。以南海某深水井为例,利用所建模型分析了施工参数对隔水管充气双梯度钻井充气水深、泥线处环空压力和充气速率的影响。结果显示:进行隔水管充气双梯度钻井时,在0~300.00 m水深段充气对井底压力的调节效果最明显,反应最迅速;在300.00~1 100.00 m水深段,充气只起到辅助调节井底压力的作用;在水深超过1 100.00 m处充气实现双梯度钻井所需的充气速率非常大;井口回压较小时,通过充气调节海底泥线处隔水管环空压力的效率高。研究结果表明,进行隔水管充气双梯度钻井时,应根据水深选择充气点,合理配置充气管路。Abstract: To determine the gas-charging water depths and gas-charging rates of dual-gradient drilling with gas- charging in risers, a differential element model was built for calculating the annular pressure of risers. The model was built according to the drift flow theory of gas-liquid two-phase flow, considering the influence of annular pressure variations of risers on the gas volume during gas flow. Then the model for calculating gas-charging rates was derived for dual-gradient drilling with gas-charging in risers, and field tests were used to verify the results of model. Taking a deep-water well in the South China Sea as an example, the effects of operating parameters on the gas-charging water depths, annular pressure at the mudlines, and gas-charging rates were analyzed by the model proposed for dual-gradient drilling with gas-charging in risers. The results showed that in dual-gradient drilling with gas-charging in risers, the regulation effects of bottom-hole pressure by gas charging are most significant in a water depth within 300 m, with the fastest response. In a water depth range of 300.00–1 100.00 m, gas charging only played an auxiliary role in bottom-hole pressure regulation. When the water depth exceeded 1 100.00 m, a high gas-charging rate was required for dual-gradient drilling by gas charging. When the wellhead back pressure was small, gas charging was highly efficient in regulating annular pressure of risers at the seabed mudlines. The research indicated that in the dual-gradient drilling with gas-charging in risers, gas-charging points could be selected according to water depth, and gas-charging pipelines should be properly deployed.
-
Keywords:
- riser /
- dual-gradient drilling /
- gas-charging rate /
- annulus pressure /
- wellhead back pressure
-
-
表 1 陆地井试验数据
Table 1 Test data of onshore wells
组号 泵排量/(L·s–1) 气体注入压力/MPa 立管压力/MPa 井深270.00 m处压力/MPa 气体流量/(m3·min–1) 相对误差,% 实测 计算 1-A 25.0 3.09 4.80 2.74 1.48 1.545 3.6 2-C 25.0 3.05 4.48 2.67 1.83 1.936 5.8 3-F 21.3 3.25 3.12 2.55 2.15 2.269 5.5 5-F 15.4 3.17 1.34 2.47 2.18 2.323 6.5 6-E 13.0 3.12 0.80 2.36 2.14 2.296 7.3 -
[1] 王江帅,李军,柳贡慧,等. 基于井下分离的深水双梯度钻井参数优化[J]. 石油勘探与开发,2019,46(4):776–781. WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Parameter optimization of deepwater dual gradient drilling based on downhole separation[J]. Petroleum Exploration and Development, 2019, 46(4): 776–781.
[2] 王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15. WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15.
[3] CHEN Xuyue, YANG Jin, GAO Deli, et al. The maximum-allowable well depth while drilling of extended-reach wells targeting to offshore depleted reservoirs[J]. Energies, 2018, 11(5): 1072. doi: 10.3390/en11051072
[4] GUO Yanli, SUN Baojing, ZHAO Keke, et al. A prediction method of natural gas hydrate formation in deepwater gas well and its application[J]. Petroleum, 2016, 2(3): .296–300. doi: 10.1016/j.petlm.2016.06.004
[5] 天工. 控压钻井技术新进展[J]. 天然气工业,2019,39(2):83. TIAN Gong. New progress in managed pressure drilling technology[J]. Natural gas industry, 2019, 39(2): 83.
[6] CHANG Yuanjiang, CHEN Guomin, WU Xiangfei, et al. Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 42–53. doi: 10.1016/j.jlp.2017.11.005
[7] 王江帅,李军,柳贡慧,等. 气侵条件下新型双梯度钻井环空出口流量变化规律研究[J]. 石油钻探技术,2020,48(4):43–49. WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Study on the change law of annular outlet flow rate in new-type dual-gradient drilling under gas cut condition[J]. Petroleum Drilling Techniques, 2020, 48(4): 43–49.
[8] XU Yuqiang, GUAN Zhichuan, XU Chuanbin, et al. Numerical method and analysis of ultrasonic detection of gas kick in deepwater risers during offshore drilling[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1311–1326. doi: 10.1016/j.ijheatmasstransfer.2019.03.102
[9] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
[10] BARRY A. Subsea rotating device enhances dual gradient drilling[J]. Offshore, 2013, 73(3): 48–50.
[11] 杨小刚. 双梯度钻井井控中的多相流动计算[D]. 青岛: 中国石油大学(华东), 2009. YANG Xiaogang. Calculation of multiphase flow in dual-gradient well control [D]. Qingdao: China University of Petroleum (East China), 2009.
[12] 苗典远. 隔水管气举双梯度钻井注气量计算及其影响因素分析[J]. 石油钻探技术,2013,41(2):23–27. doi: 10.3969/j.issn.1001-0890.2013.02.005 MIAO Dianyuan. Calculation of gas injection volume of riser gas-lift double-gradient drilling and analysis of its influencing factors[J]. Petroleum Drilling Tecniques, 2013, 41(2): 23–27. doi: 10.3969/j.issn.1001-0890.2013.02.005
[13] 殷志明. 新型深水双梯度钻井系统原理、方法及应用研究[D]. 青岛: 中国石油大学(华东), 2007. YIN Zhiming. New dual-gradient deepwater drilling system: principle, method and application [D]. Qindao: China University of Petroleum (East China), 2007.
[14] 王江帅,李军,柳贡慧,等. 变压力梯度下钻井环空压力预测[J]. 石油学报,2020,41(4):497–504. doi: 10.7623/syxb202004012 WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Prediction of drilling annular pressure under variable pressure gradient[J]. Acta Petrolei Sinica, 2020, 41(4): 497–504. doi: 10.7623/syxb202004012
[15] 王果. 基于三级反馈调节的控压钻井回压自动调控方法[J]. 石油钻采工艺,2019,41(4):441–447. WANG Guo. Automatic backpressure control techniques of MPD drilling based on three-layer feedback regulation method[J]. Oil Drilling & Production Technology, 2019, 41(4): 441–447.
[16] TORISA K S, MIWA S. Robust bubble feature extraction in gas-liquid two-phase flow using object detection technique[J]. Journal of Nuclear Science and Technology, 2020, 57(1): 1–14. doi: 10.1080/00223131.2019.1647894
[17] DUAN Liqin, SONG Jinming, LI Xuegang, et al. Glycerol dialkyl glycerol tetraethers signature in sediments of the East China Sea and its implication on marine and continental climate and environment records[J]. Ecological Indicators, 2019, 103: 509–519. doi: 10.1016/j.ecolind.2019.04.040
[18] WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Development and application of wellbore heat transfer model considering variable mass flow[J]. Underground Space, 2020, 6(3): 316–328.
[19] 周云龙,陈旭,郭新田,等. 三面加热窄矩形通道内气液两相流流型研究[J]. 原子能科学技术,2018,52(7):1262–1267. doi: 10.7538/yzk.2017.youxian.0689 ZHOU Yunlong, CHEN Xu, GUO Xintian, et al. Research on the flow pattern of gas-liquid two-phase flow in a narrow rectangular channel heated on three sides[J]. Atomic Energy Science and Technology, 2018, 52(7): 1262–1267. doi: 10.7538/yzk.2017.youxian.0689
[20] WANG Xuerui, SUN Baojiang, LUO Pingya, et al. Transient temperature and pressure calculation model of a wellbore for dual gradient drilling[J]. Journal of Hydrodynamics, 2018, 30(4): 701–714. doi: 10.1007/s42241-018-0063-0
[21] SUN Wanchun, LIU Yanchu, HE Kui, et al. The phase distribution of gas-liquid two-phase flow in microimpacting T-junctions with different branch channel diameters[J]. The Chemical Engineering Journal, 2018, 333: 34–42. doi: 10.1016/j.cej.2017.09.136
[22] SUMI T, KUROTAKI T, OHSAWA K, et al. Preliminary study on compressible gas-liquid two-phase flow computation for ultra-high-pressure fuel injection process[J]. Transactions of the JSME (in Japanese), 2019, 85(872): 18–00332.
-
期刊类型引用(8)
1. 陈允禄,李玮健,冯伟风. 净浆搅拌转速对混凝土性能的影响. 建材世界. 2024(01): 30-33 . 百度学术
2. 蒋祥光,许明标. 纳米氧化铝对油井水泥基复合材料力学性能的影响. 当代化工. 2023(05): 1252-1255 . 百度学术
3. 唐凯,陈小荣,李志宏. 表层套管固井低剪切速率对水泥浆性能的影响——以厄瓜多尔安第斯区块为例. 石油地质与工程. 2023(06): 85-89+96 . 百度学术
4. 宋建建,许明标,王晓亮,张敏,胡顺,杜佳琪. 胶乳粉固井水泥浆体系研究与应用. 油田化学. 2021(03): 406-411 . 百度学术
5. 徐力群,张兴国,王银东,金也,丁辉,刘增,刘开强,郭小阳. 低返速固井对油井水泥浆性能的影响. 钻井液与完井液. 2019(01): 70-76 . 百度学术
6. 寇云鹏,齐兆军,宋泽普,杜加法,杨纪光. 全尾砂高浓度充填料浆流变特性试验研究. 矿业研究与开发. 2018(12): 32-35 . 百度学术
7. 李建山. 泾河油田水平井固井难点与对策研究. 石油钻探技术. 2017(06): 19-23 . 本站查看
8. 刘振通,党冬红,和建勇,王莹,宋元洪,郭文猛,张玉鹏,王洪峰. 委内瑞拉低压高渗漏地层小间隙尾管固井技术. 钻井液与完井液. 2017(06): 83-88 . 百度学术
其他类型引用(5)