The Effect of Pre-Applied Annulus Back Pressure Cementing on Radial Stress of Interfaces in Double Layer Casing Systems
-
摘要: 环空加压固井技术能有效提高水泥环密封能力、降低环空带压问题的发生,为了准确掌握其作用的力学机理,基于弹性力学和界面位移连续条件,考虑环空加压固井施工过程,建立了环空加压固井套管–水泥环界面应力计算模型,研究了环空加压固井提高双层套管–水泥环系统密封能力的力学机理,并采用试验方法验证了理论模型的准确性。利用建立的力学分析模型,研究了各因素对界面密封能力的影响规律。研究结果显示:提高固井过程中环空加压压力可显著增大界面上产生的径向压应力,提高水泥环的密封能力;界面径向应力随环空压力增大呈线性增加;环空加压固井对提高内层套管–水泥环界面密封能力的效果更好;水泥环弹性模量越大,界面处的径向应力越大,密封能力越强。研究结果表明,环空加压固井能显著提高界面密封能力,利用建立的力学模型能定量计算界面处的径向应力。研究成果对油气井环空加压固井设计与施工具有重要意义。Abstract: Pre-applied annulus back pressure cementing can effectively improve the sealing ability of cement sheaths and reduce the occurrence of annulus pressure buildup. In order to accurately understand the mechanical mechanism, the model for calculating the stress on the casing-cement sheath interface was developed based on elastic mechanics and continuity condition of interfacial displacement with consideration of the operation process of pre-applied annulus back pressure cementing. With the model, the mechanical mechanism for improving sealing ability of the system of double layer casing-cement sheath with pre-applied annulus back pressure cementing was further studied. The accuracy of the theoretical model was verified by experiments. The influence of various factors on the sealing ability of the interface was studied by the mechanical model proposed. The results showed that increasing the pre-applied annulus back pressure during cementing could significantly increase the radial stress on interface, resulting in strengthening the sealing ability of cement sheath. The radial stress on interface increases linearly with the increase of annulus pressure. The pre-applied annulus back pressure cementing works better on the improvement of sealing ability of the inner casing-cement sheath interface. A relationship was delineated: the greater the elastic modulus of the cement sheath, the greater the radial stress on the interface, and the stronger the sealing ability. The results indicated that the pre-applied annulus back pressure cementing could significantly increase sealing ability of the interface, and the model has provided a quantitative calculation method for the radial stress on the interface. The research finding is of great importance to the design and operation of the pre-applied annulus back pressure cementing in oil and gas wells.
-
-
表 1 理论计算和试验测得的气窜压力
Table 1 Gas channeling pressure obtained by theoretical calculation and experiment
环空压力/MPa 气窜压力/MPa 相对误差,% 试验 计算 0 0.8 0.8 0 5 3.7 3.5 5.40 10 6.4 7.2 12.50 15 9.8 10.7 9.18 表 2 页岩气井井身剖面力学参数
Table 2 Mechanical parameters of casing program of shale gas wells
井身剖面 外径/mm 厚度/mm 弹性模量/GPa 泊松比 水泥环2 311.1 33.35 12/10/8 0.25 中间套管 244.5 11.99 210 0.30 水泥环1 220.5 40.41 12/10/8 0.25 生产套管 139.7 12.34 210 0.30 -
[1] 高德利,刘奎. 页岩气井井筒完整性若干研究进展[J]. 石油与天然气地质,2019,40(3):602–615. doi: 10.11743/ogg20190315 GAO Deli, LIU Kui. Progresses in shale gas well integrity re-search[J]. Oil & Gas Geology, 2019, 40(3): 602–615. doi: 10.11743/ogg20190315
[2] 陈雷,陈会年,张林海,等. JY页岩气田水平井预防环空带压固井技术[J]. 石油钻采工艺,2019,41(2):152–159. CHEN Lei, CHEN Huinian, ZHANG Linhai, et al. A cementing technology for preventing the annulus pressure of horizontal wells in JY Shale Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(2): 152–159.
[3] LIU Kui, GAO Deli, TALEGHANI A D. Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 168: 370–379. doi: 10.1016/j.petrol.2018.05.016
[4] 曾德智,喻智明,何奇垚,等. 页岩气井环空带压安全风险定量评价方法研究[J]. 西南石油大学学报(自然科学版),2019,41(6):146–154. ZENG Dezhi, YU Zhiming, HE Qiyao, et al. Research on safety assessment technology of sustained casing pressure in shale gas[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(6): 146–154.
[5] 张波,罗方伟,孙秉才,等. 深层油气井井筒完整性检测方法[J]. 石油钻探技术,2021,49(5):114–120. ZHANG Bo, LUO Fangwei, SUN Bingcai, et al. A method for wellbore integrity detection in deep oil and gas wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114–120.
[6] 胡志强,路保平,侯绪田,等. 深层气井油套环空泄漏点关键参数地面诊断技术[J]. 石油钻采工艺,2020,42(5):632–636. HU Zhiqiang, LU Baoping, HOU Xutian, et al. Surface diagnosis technology for the key parameters of leakage point in the tubing-casing annulus of deep gas wells[J]. Oil Drilling & Production Technology, 2020, 42(5): 632–636.
[7] 谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术,2011,39(3):53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009 TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
[8] 刘仍光,张林海,陶谦,等. 循环应力作用下水泥环密封性实验研究[J]. 钻井液与完井液,2016,33(4):74–78. LIU Rengguang, ZHANG Linhai, TAO Qian, et al. Experimental study on airtightness of cement sheath under alternating stress[J]. Drilling Fluid & Completion Fluid, 2016, 33(4): 74–78.
[9] 杨红歧,陈会年,邓天安,等. 元坝气田超深探井小尾管防气窜固井技术[J]. 石油钻采工艺,2020,42(5):592–599. YANG Hongqi, CHEN Huinian, DENG Tianan, et al. The anti-gas channeling small-liner cementing technology for ultra deep exploration wells of Yuanba Gasfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 592–599.
[10] 焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):512–520. JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan Basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 512–520.
[11] 赵效锋,张庆生. 气井套管环空密封失效预防措施初探[J]. 断块油气田,2018,25(5):657–660. ZHAO Xiaofeng,ZHANG Qingsheng. Preliminary preventive measure for casing annular seal failure in gas well[J]. Fault-Block Oil & Gas Field, 2018, 25(5): 657–660.
[12] 席岩,李方园,王松,等. 利用预应力固井方法预防水泥环微环隙研究[J]. 特种油气藏,2021,28(6):144–150. XI Yan, LI Fangyuan, WANG Song, et al. Study on prevention of micro-annulus in cement sheath by prestressed cementing me-thod[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 144–150.
[13] 张兴国,于学伟,郭小阳,等. 温敏性膨胀微胶囊防气窜水泥浆体系[J]. 钻井液与完井液,2018,35(1):71–76. ZHANG Xingguo, YU Xuewei, GUO Xiaoyang,et al. A temperature sensitive expanding microcapsule anti-gas-channeling cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 71–76.
[14] 初纬,沈吉云,杨云飞,等. 连续变化内压下套管–水泥环–围岩组合体微环隙计算[J]. 石油勘探与开发,2015,42(3):414–421. doi: 10.1016/S1876-3804(15)30033-1 CHU Wei, SHEN Jiyun, YANG Yunfei, et al. Calculation of micro-annulus size in casing-cement sheath- formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development, 2015, 42(3): 414–421. doi: 10.1016/S1876-3804(15)30033-1
[15] 姚晓,周兵,李美平,等. 套管试压对水泥环密封性的影响[J]. 西安石油大学学报(自然科学版),2009,24(3):31–34. YAO Xiao, ZHOU Bing, LI Meiping, et al. Effect of casing pressure testing on the sealing performance of cement sheath[J]. Journal of Xi’an Shiyou University ( Natural Science Edition), 2009, 24(3): 31–34.
[16] 刘洋,严海兵,余鑫,等. 井内压力变化对水泥环密封完整性的影响及对策[J]. 天然气工业,2014,34(4):95–98. LIU Yang, YAN Haibing, YU Xin, et al. Negative impacts of borehole pressure change on cement sheath sealing integrity and countermeasures[J]. Natural Gas Industry, 2014, 34(4): 95–98.
[17] 许红林,张智,施太和,等. 压力和温度共同作用下的水泥环应力分析[J]. 石油钻探技术,2014,42(6):45–48. XU Honglin, ZHANG Zhi, SHI Taihe, et al. Stress analysis of the cement sheath under both pressure and temperature[J]. Petroleum Drilling Techniques, 2014, 42(6): 45–48.
[18] 赵效锋,管志川,吴彦先,等. 均匀地应力下水泥环应力计算及影响规律分析[J]. 石油机械,2013,41(9):1–6. doi: 10.3969/j.issn.1001-4578.2013.09.001 ZHAO Xiaofeng, GUAN Zhichuan, WU Yanxian et al. Cement sheath stress calculation and analysis of influence law under even ground stress[J]. China Petroleum Machinery, 2013, 41(9): 1–6. doi: 10.3969/j.issn.1001-4578.2013.09.001
[19] 李早元,祁凌,刘锐,等. 空心微珠低密度水泥环完整性试验研究[J]. 石油钻探技术,2017,45(3):42–47. LI Zaoyuan, QI Ling, LIU Rui, et al. Experimental study on the integrity of low-density cement sheath with hollow microsphere[J]. Petroleum Drilling Techniques, 2017, 45(3): 42–47.
[20] 林元华,邓宽海,易浩,等. 强交变热载荷下页岩气井水泥环完整性测试[J]. 天然气工业,2020,40(5):81–88. doi: 10.3787/j.issn.1000-0976.2020.05.010 LIN Yuanhua, DENG Kuanhai, YI Hao, et al. Integrity tests of cement sheath for shale gas wells under strong alternating thermal loads[J]. Natural Gas Industry, 2020, 40(5): 81–88. doi: 10.3787/j.issn.1000-0976.2020.05.010
[21] 刘硕琼,李德旗,袁进平,等. 页岩气井水泥环完整性研究[J]. 天然气工业,2017,37(7):76–82. LIU Shuoqiong, LI Deqi, YUAN Jinping, et al. Cement sheath integrity of shale gas wells: a case study from the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(7): 76–82.
[22] 步玉环,沈兆超,王银东,等. 固井第一界面微环隙对声波传播规律的影响[J]. 石油钻探技术,2014,42(1):37–40. doi: 10.3969/j.issn.1001-0890.2014.01.007 BU Yuhuan, SHEN Zhaochao, WANG Yindong, et al. Effect of microannulus on sonic wave propagation at first cementing inter-face[J]. Petroleum Drilling Techniques, 2014, 42(1): 37–40. doi: 10.3969/j.issn.1001-0890.2014.01.007
[23] 刘奎,王宴滨,高德利,等. 页岩气水平井压裂对井筒完整性的影响[J]. 石油学报,2016,37(3):406–414. doi: 10.7623/syxb201603013 LIU Kui, WANG Yanbin, GAO Deli, et al. Effects of hydraulic fracturing on horizontal wellbore for shale gas[J]. Acta Petrolei Sinica, 2016, 37(3): 406–414. doi: 10.7623/syxb201603013
[24] 刘奎,高德利,曾静,等. 温度与压力作用下页岩气井环空带压力学分析[J]. 石油钻探技术,2017,45(3):8–14. LIU Kui, GAO Deli, ZENG Jing, et al. Annulus pressure analysis of a shale gas well under varied temperatures and pressures[J]. Petroleum Drilling Techniques, 2017, 45(3): 8–14.
[25] 陶谦,陈星星. 四川盆地页岩气水平井B环空带压原因分析与对策[J]. 石油钻采工艺,2017,39(5):588–593. TAO Qian, CHEN Xingxing. Causal analysis and countermeasures on B sustained casing pressure of shale-gas horizontal wells in the Sichuan Basin[J]. Oil Drilling & Production Technology, 2017, 39(5): 588–593.
[26] 张林海,刘仍光,周仕明,等. 模拟压裂作用对水泥环密封性破坏及改善研究[J]. 科学技术与工程,2017,17(13):168–172. ZHANG Linhai, LIU Rengguang, ZHOU Shiming, et al. Investigation on sealing failure and improving of cement sheath under simulated staged fracturing[J]. Science Technology and Engineering, 2017, 17(13): 168–172.
[27] ZHOU Shiming, LIU Rengguang, ZENG Hao, et al. Mechanical characteristics of well cement under cyclic loading and its influence on the integrity of shale gas wellbores[J]. Fuel, 2019, 250: 132–143. doi: 10.1016/j.fuel.2019.03.131
[28] 席岩,李军,陶谦,等. 循环载荷作用下微环隙的产生及演变[J]. 断块油气田,2020,27(4):522–527. XI Yan,LI Jun,TAO Qian,et al. Emergence and evolution of micro-annulus under cyclic loading[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 522–527.
[29] 何吉标,彭小平,刘俊君,等. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用[J]. 石油钻探技术,2020,48(3):35–40. doi: 10.11911/syztjs.2020054 HE Jibiao, PENG Xiaoping, LIU Junjun, et al. Development of an anti-deformation cement slurry under alternative loading and its application in Fuling shale gas wells[J]. Petroleum Drilling Techni-ques, 2020, 48(3): 35–40. doi: 10.11911/syztjs.2020054
[30] 孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55–60. SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.
-
期刊类型引用(10)
1. 李顺雨,江涛,杨桢剑,魏勇,马羽晋,肖东. 川西地区气井环空带压条件下水泥环裂缝封堵规律研究. 钻采工艺. 2024(03): 153-160 . 百度学术
2. 完颜祺琪,毛涛,王云,黄盛,李康,李早元,苏东华. 储气库固井水泥石渗透率演化规律. 断块油气田. 2024(05): 930-935 . 百度学术
3. 王涛,申峰,展转盈,窦倩,郭庆. 页岩气小井眼水平井纳米增韧水泥浆固井技术. 石油钻探技术. 2023(03): 51-57 . 本站查看
4. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
5. 杨伟. 川南区块页岩气井压稳防漏固井技术研究. 钻探工程. 2023(05): 153-158 . 百度学术
6. 王俊博,田继军,李飞,张轩铭,季东良,王先美,李鑫. 准噶尔盆地南缘煤层气井管柱腐蚀原因及防腐策略. 特种油气藏. 2023(05): 151-157 . 百度学术
7. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 . 百度学术
8. 刘奎,丁士东,初永涛,刘仍光. 页岩气井压裂交变载荷水泥环密封能力研究. 石油机械. 2023(11): 79-86 . 百度学术
9. 王典,李军,张伟,连威. 吉木萨尔页岩油井水泥环性能评价. 新疆石油天然气. 2023(04): 49-55 . 百度学术
10. 高德利,刘奎,王宴滨,刘金海,李轩. 页岩气井井筒完整性失效力学机理与设计控制技术若干研究进展. 石油学报. 2022(12): 1798-1812 . 百度学术
其他类型引用(2)