Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea
-
摘要: 北极油气资源丰富,但其低温、浅层灾害、冻土层、井筒处于大温变条件等地质、环境因素给钻井作业带来诸多挑战,为此,在“十三五”期间,中国石化以钻井安全环保高效为总目标,以解决钻井装备及工具、钻井工艺及措施、井筒工作流体的“冷”适应性问题为核心,进行了钻井灾害风险评价控制与环保、钻井关键装备及工具、钻井工艺与井筒工作液等关键技术研究,在浅层气、天然气水合物灾害地层的定量风险评价方法、–50 ℃低温轨道钻机及钻井工具、冻土层井壁稳定性评价与控制技术、低温钻井液与固井水泥浆等工程技术方面取得了重要进展,初步形成了极地冷海钻井关键技术体系。随着北极油气开发,陆地上将进入更高纬度、更厚永冻层区域,海洋上将向更深水域、常年冰或更厚浮冰海域进军,极地冷海钻井将面临更大的挑战,需要进一步完善极地冷海钻井完井技术理论与方法,研制新型钻井完井关键装备与工具,形成较为完善的极地冷海钻井完井技术体系,以满足北极地区油气藏高效勘探开发的需求,提升我国石油公司在极地油气合作项目中的经济效益和核心竞争力。Abstract: The Arctic area is rich in oil and gas resources. However, its geological and environmental factors such as low temperature, shallow hazards, permafrost and extreme temperature change in wellbore bring many challenges to drilling operation. For this reason, during the "Thirteenth Five-Year Plan" period, Sinopec took safety, environmental protection and efficient drilling as its overall goals and focused on solving the problem of "cold" adaptability of drilling equipments and tools, drilling technologies and measures, wellbore working fluids. Research was performed on key technologies regarding drilling hazard assessment and control, environmental protection, key drilling equipments and tools, drilling techniques, wellbore working fluids, etc. Impressive progresses were made in the quantitative risk assessment method for hazards to shallow gas and gas hydrate formations, the orbital drilling rigs and tools utilized at −50 °C, stability evaluation and borehole stability control in permafrost, and engineering technologies related to drilling fluid and cement slurry under low temperature conditions. As a result, the key technology system of drilling in the Arctic sea was preliminarily developed. As the Arctic oil and gas development enters higher latitudes and thicker permafrost regions on land, and the oceans will advance to deeper waters, perennial ice or thicker ice floes, drilling in Arctic sea will face greater challenges and requires further progress. Therefore, it is necessary to build a complete drilling and completion technology system in the Arctic sea by improving the theories and methods and developing new key equipments and tools. With the system, the demands of efficient exploration and development of oil and gas reservoirs in the Arctic region can be realized, thereby enhancing the economic benefits and core competitiveness of China’s oil companies in international cooperation projects of oil and gas development in this area.
-
胜利海上油田主力层系馆陶组为疏松砂岩油藏,具有油层多、井段长、夹层厚、层间非均质性强和易出砂等特点,开发过程中因油井出砂和渗透率差异大造成的层间矛盾是影响其生产的主要因素[1-3]。特别是经过多年强注强采,层间矛盾更加突出,注入水单层突进或局部突进比较严重,开发效果变差。目前,胜利油田98%的海上油井采用电动潜油泵合采[4],在海上8口油井进行了分层产液测试,测试发现,合采产液量为579.8 t/d,分层采产液量合计为1 256.2 t/d,合采产液量为分层采累计产液量的46.2%。测试结果表明,多层合采对油井产量产生了较大影响。因此,为使各油层均衡生产,充分发挥中低渗透层的产能,有必要进行分层采油。针对海上疏松砂岩油藏,目前国内外仅有中国海油应用了分层防砂分层采油技术[5-6]。中国海油应用分层防砂分层采油技术井的生产套管为ϕ244.5 mm套管,防砂后通径达120.7 mm,满足分层采油管柱下入要求。而胜利油田海上油井的生产套管主要为ϕ177.8 mm套管,防砂后通径仅76.0 mm,无法直接应用中国海油分层防砂分层采油技术。国内陆上成熟的分层采油技术采用机械或液压滑套控制各层的开关,主要针对的是有杆泵采油井,且不能在线调节流量[7-14]。因此,为满足胜利海上电动潜油泵井分采要求,笔者研究了ϕ177.8 mm生产套管大通径一步法分层充填防砂技术,确保防砂后通径在90.0 mm以上,并下入具有自膨胀封隔功能的在线调节分层采油管柱,实现了在ϕ177.8 mm生产套管内分层防砂分层采油。
1. 大通径分层充填防砂技术
目前胜利海上油田主要采用分层挤压充填+全井循环充填防砂技术[15-17],需要分2步完成,留井管柱为笼统防砂完井管柱,无法实现分层采油,同时该技术还存在以下问题:1)完成分层挤压充填、起出分层充填管柱后,再次下入全井循环充填防砂管柱过程中地层易吐砂,导致近井地带充填不密实;2)环空和炮眼采用笼统充填,由于层间差异大,易形成砂桥,造成环空充填不密实;3)留井防砂管柱通径小,仅为76.0 mm,无法满足后期分层采油管柱下入要求。因此,研发了大通径分层充填防砂管柱,一趟管柱可实现3层以上的挤压充填与循环充填施工,确保各层充填密实,同时留井管柱通径达到98.6 mm,为后期分层采油提供了空间。
1.1 大通径分层充填防砂管柱
大通径分层充填防砂管柱由内外服务管柱构成(见图1):外服务管柱主要包括分层封隔器、外充填工具、反洗工具及防砂筛管等工具;内服务管柱包括挤充转换工具、开关控制装置及内充填工具等。通过拖动内服务管柱,依次实现各层差异化防砂(压裂、挤压、循环或挤压循环一体化),具备不动管柱快速充填及反洗井等功能,安全可靠。
1.2 分层充填防砂流程
在井口将内外服务管柱连接好,下至设计位置,通过油管加压至8 MPa坐封顶部封隔器,继续加压至18 MPa打开内充填滑套,正转油管实现丢手;上提内服务管柱至定位装置处,通过油管加压至18 MPa坐封层间封隔器;下放管柱至外充填口位置进行充填,充填结束后,不动管柱反洗井至出口处的洗井液不含砂,上提管柱充填上层,起出内服务管柱,即可下入分层采油管柱。
1.3 分层充填防砂技术的特点
1)采用高承压强悬挂分层封隔系统,解决了海上大排量地层充填过程中产生的25 MPa以上的工作压差、500 kN上顶力。
2)采用不动管柱快速反洗井系统,解决了海上大斜度井施工过程中出现砂堵导致的反洗井困难等问题,确保了施工安全可靠。
3)采用挤压循环充填一体化装置。针对国内外分层防砂管柱采用拖动内管方式实现挤压循环转换时施工过程复杂、施工风险高的问题,优化设计了柔性挤充转换工具,实现了原位挤压、循环充填工序转换。
1.4 分层充填防砂技术参数
分层充填防砂管柱适用于ϕ177.8 mm生产套管,可实现2~4层分层充填防砂,层间封隔密封压力达到35 MPa,施工排量3~5 m3/min,最高砂比可达80%以上,留井管柱通径达98.0 mm,为后期下入分层采油管柱提供了空间。
2. 在线调节分层采油技术
该技术利用机电一体化原理[18-24],采用电控方式在线调控井下流量阀。首先,将井下分层采油管柱下入留井分层防砂管柱内,利用自膨胀封隔器实现层间封隔,实现油层分层;其次,在地面利用生产管柱携带的信号电缆控制井下流量阀的开关,实现分层采油,生产过程中还可以根据需要调整井下流量阀的开度,从而调节对应油层的产液量,或直接关闭任一油层暂停生产,而单独生产另一油层,实现选择性换层(调节)采油。
2.1 在线调节分层采油管柱
在线调节分层采油管柱主要由安全阀、过电缆封隔器、电动潜油泵机组、电动潜油泵加强装置、井下线缆分接器、测试仪、在线调节阀、开启滑套、分层膨胀封隔器及配套的安全接头和其他管柱辅助工具组成,如图2所示。
2.2 工作原理
采用遇油遇水膨胀封隔器分隔不同生产层位,实现分层,上遇油遇水膨胀封隔器在防砂管柱以上位置;下遇油遇水膨胀封隔器及配套安全接头在防砂管柱内腔,便于起出采油管柱遇阻时采取措施。分层采油管柱下至设计位置后,无需加压坐封封隔器就能实现分层生产。
安装在分层采油管柱上的井下在线调节阀可以调节不同层位液流通道大小,实现流量在线调节功能。调节时,地面测控系统硬件模块(控制箱)在地面通过信号电缆将控制指令发送给井下微型电机,通过井下微型电机调整井下流量阀的开度,并对操作过程进行记录和存储。
2.3 主要技术特点
1)采用遇油遇水膨胀封隔器进行分层,完井作业相关工具下至设计位置后无需加压坐封,施工工艺简便;
2)采用在线电动调节阀,实现了单层液量通道的实时在线调节;
3)管柱配套安全接头具有安全拔断功能,确保后期处理安全可靠;
4)采用电动潜油泵加强装置,提高了电动潜油泵机组尾管的承重能力;
5)采用液压式同心双管液控安全开启滑套,地面加压后油层与油套环空同时提供备用液流通道,确保管柱无隐患正常生产。
2.4 技术指标
分层采油管柱适用于ϕ177.8 mm生产套管,承压压力达到35 MPa,耐温达120 ℃,适用于井斜角不大于60°的油井。
2.5 关键工具研制
2.5.1 遇油遇水膨胀封隔器
对于需要重新进行防砂的井,可以在防砂管柱中配套密插筒,利用密插密封方式分隔油层,实现分层采油。但大部分已防砂油井在检修电动潜油泵时由于底部防砂管柱下入时间短,仍然有效,无须重新防砂,因此研制了遇油遇水膨胀封隔器,以充分利用现有防砂管柱实现分层采油。
遇油遇水膨胀胶筒封隔器主要由上接头、中心管、上挡帽、下挡帽和固定销钉等组成,如图3所示。
油井实施分层采油时,可充分利用现有防砂管柱,在防砂管柱内上下层中间无节箍位置下入小型遇油遇水膨胀封隔器,生产后遇油遇水膨胀胶筒与井内液体充分接触,可自行膨胀,形成分层密封。
采用遇油遇水膨胀封隔器分层时,封隔器不需加压坐封即可膨胀实现密封分层,施工工艺简单;遇油遇水膨胀胶筒与井内液体充分接触7 d即可达到要求的分隔效果。
遇油遇水膨胀封隔器的技术参数见表1。
表 1 遇油遇水膨胀封隔器的技术参数Table 1. Technical parameters of oil and water swelling packer型号 最大外径/
mm最小通径/
mm额定压力/
MPa连接螺纹 坐封膨胀
时间/dQHSF-70 70 38 25 ϕ48.3 mm
TBG7 QHSF-152 152 76 25 ϕ88.9 mm
TBG7 2.5.2 在线电动调节阀
在线电动调节阀主要由压环、上接头、连接头、电机管、电动机、转动轴、弹簧、外管、滑套、限位套、活塞、T形盘根和下接头等组成,如图4所示。
在线电动调节阀连接于分层采油管柱需控制产液量油层的位置,关闭生产油层时,地面控制仪发出控制信号,控制信号通过信号电缆输送至井下在线电动调节阀,控制井下在线电动调节阀电动机正反转动,电动机带动传动轴转动,限位套在传动轴转动过程中与滑套发生相对移动,同时带动活塞移动,活塞与滑套相互配合,实现在线电动调节阀连通与关闭状态的转换。电动机正转时,在线电动调节阀进行打开动作;电动机反转时,在线电动调节阀进行关闭动作。通过电动机正反旋转的圈数控制电动调节阀打开和关闭的程度。
在线电动调节阀内部无复杂电路元器件,可靠性较高;其内部设计有限位防卡堵机构,活塞轴向运动到达全开或全关位置时不会发生卡堵现象;在线电动调节阀的开度可调,可根据实际需要调节,以改变对应油层的产液量。
在线电动调节阀的最大外径139.0 mm,最小通径62.0 mm,额定压力25 MPa,连接螺纹为ϕ48.3 mmTBG,最高耐温125 ℃。
3. 现场试验
在胜利埕岛油田埕北20C-A井进行了分层防砂试验,该井共钻遇油层33.60 m/12层,于2012年10月采用电动潜油泵投产,防砂方式为精密复合滤砂管循环充填防砂。2015年7月由于砂埋油层躺井,躺井前日产液量148 t,日产油量7.3 t,含水率95.1%。为提高不同油层的开发效果,采用大通径分层充填防砂管柱进行分层防砂,通过差异化充填防砂,改造近井地带的地层,释放油层潜能,同时提高近井地带渗流能力及挡砂屏障强度,以满足油井生产需求,延长防砂有效期。根据地质要求及测井解释结果,将8#、13#等5个小层(1 816.30~2 019.40 m井段)作为1个层(以下简称为下层)进行循环充填防砂,将6#、7#作为1个层(1 742.50~1 755.00 m井段)(以下简称为上层)进行挤压充填防砂。
下层循环充填陶粒2.8 m3,上层挤压充填陶粒22.4 m3。分层防砂施工后3个月平均日产液量130 t,日产油量26 t,含水率80%,比分层防砂前日增油18.7 t,含水率降低15.1百分点,较大程度地发挥了各层的产能。分层防砂在海上油井的成功实施,验证了分层防砂技术的可靠性。
此后,又在陆上2口井进行了分层采油试验。之所以选择在陆上油井进行现场试验,是为了降低试验成本。但选择的试验井(GO2-17-A井和GO4-19-B井),其所钻遇的储层与胜利海上疏松砂岩油藏储层物性相近,完井工具尺寸也相同。以GO4-19-A井为例介绍试验情况,其生产层位情况见表2。
表 2 GO4-19-A井生产层位Table 2. Production layer of Well GO4-19-A层位 油层井段/m 砂体厚度/m 有效厚度/m 射开井段/m 射孔厚度/m 渗透率/mD 32 1 297.20~1 301.40 4.20 4.00 1 297.20~1 301.40 4.20 1 116 52 1 318.80~1 325.60 6.80 5.00 1 319.00~1 324.00 5.00 1 498 该井2个生产层位的渗透率分别为1 116和1 498 mD,在该井进行分层采油和分层测试,验证电动潜油泵井分层采油技术的可行性。该井完井生产初期对52层进行了单采,日产液42.5 t,日产油0.5 t,含水率98.8%。52层单采完成后,关闭52层,对32层进行了单采,日产液量38.7 t,日产油量0.8 t,含水率97.9%。地面控制逐层单采生产,利用逐层单采生产资料,优化52层和32层的产液量,根据优化结果调节52层流量阀开度,将该层产液量控制在37.5 t,32层流量阀全部打开。优化后52层含水率由98.8%降至96.0%,32层含水率不变,两层分采合计日产油量2.3 t,比两层合采平均日增油1.0 t,取得了较好的控水增油效果。
4. 结 论
1)针对胜利海上疏松砂岩油藏现有笼统充填防砂不密实、防砂通径小的问题,研发了内通径为98.0 mm的分层充填防砂管柱,增大了防砂后的通径,实现了分层防砂,便于后期实施分层采油。
2)研制了遇水遇油膨胀封隔器,其膨胀胶筒与井内液体充分接触后可自行膨胀,实现密封。
3)研制了井下在线电动调节阀,通过地面控制仪控制井下在线电动调节阀的开度,调控油井各层段产液量。
4)现场试验表明,采用分层防砂分层采油技术可解决层间矛盾,充分发挥各油层的作用,提高产油量,降低含水率。
-
表 1 不同规格Q345E钢板–50 ℃下的冲击试验结果
Table 1 Impact test results of Q345E steel plates with different specifications at –50 °C
序号 材料 冲击功/J 结果 1 Q345E/-16 277 279 287 合格 2 Q345E/-20 88 74 82 合格 3 Q345E/-36 248 231 209 合格 4 Q345E/-40 346 21 57 合格 5 Q345E/-45 40 25 38 合格 6 Q345E/200X160X16 95 86 80 合格 7 Q345E/160X120X12 171 134 158 合格 GB/T 1591—2008和API 4F
标准的参考值平均值27 J,单个值20 J 表 2 40CrNiMo合金钢采用不同热处理工艺后的低温冲击试验结果
Table 2 Low-temperature impact test results of 40CrNiMo alloy steel treated with different heat treatment processes
序号 材料 抗拉强
度/MPa屈服强
度/MPa延伸率,
%冲击功/
J热处理工艺 1 40CrNiMo 1052 886 13 26 A ℃淬火+
560 ℃回火2 40CrNiMo 1010 868 14 35 B ℃淬火+
585 ℃回火3 40CrNiMo 980 850 13 40 A ℃淬火+
600 ℃回火4 40CrNiMo 945 760 13 51 B ℃淬火+
620 ℃回火5 40CrNiMo 968 770 13 56 C ℃淬火+
635 ℃回火API 8C标准的
参考值≥820 ≥758 ≥12 ≥27 — 表 3 两种低温钻井液体系的常规性能
Table 3 Conventional performance of two low-temperature drilling fluid systems
钻井液 试验温度/℃ 表观黏度/(mPa·s) 塑性黏度/(mPa·s) 动切力/Pa ϕ6读数 API滤失量/mL 润滑系数 pH值 配方1 30 26.0 16.0 10.0 6 7.2 0.160 9 10 31.5 21.0 10.5 6 6.4 0 41.5 24.0 17.5 7 5.6 –10 50.5 31.0 19.5 7 4.4 –25 70.0 44.0 26.0 9 3.0 配方2 30 32.5 21.0 11.5 8 7.2 0.094 9 4 44.5 28.5 16.0 9 4.4 0 47.5 31.0 16.5 10 3.0 注:配方1为–25~0 ℃低温钻井液体系;配方2为0~4 ℃低温钻井液体系;上述2种钻井液体系的密度均为1.15 kg/L。 -
[1] 中华人民共和国国务院新闻办公室. 中国的北极政策[EB/OL].(2018-01-26)[2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm. The state council information office of the People’s Republic of China.China’s Arctic policy[EB/OL]. (2018-01-26) [2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.
[2] HAMILTON J M. The challenges of deep-water Arctic development[J]. International Journal of Offshore and Polar Engineering, 2011, 21(4): 241–247.
[3] 余本善, 孙乃达.全球待发现油气资源分布及启示[J].中国矿业, 2015, 24(增刊1): 22-27. YU Benshan, SUN Naida. The distribution of global undiscovered hydrocarbon resources and enlightenment[J]. China Mining Magazine, 2015, 24(supplement 1): 22-27.
[4] 李浩武,童晓光. 北极地区油气资源及勘探潜力分析[J]. 中国石油勘探,2010,15(3):73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015 LI Haowu, TONG Xiaoguang. Exploration potential analysis of oil and gas resources in Arctic regions[J]. China Petroleum Exploration, 2010, 15(3): 73–82. doi: 10.3969/j.issn.1672-7703.2010.03.015
[5] 崔白露,王义桅. “一带一路”框架下的北极国际合作:逻辑与模式[J]. 同济大学学报(社会科学版),2018,29(2):48–58. CUI Bailu, WANG Yiwei. International cooperation on the Arctic under the Belt and Road Initiative: logics and models[J]. Journal of Tongji University (Social Science Section), 2018, 29(2): 48–58.
[6] WHITEMAN G, HOPE C, WADHAMS P. Climate science: vast costs of Arctic change[J]. Nature, 2013, 499(7459): 401–403. doi: 10.1038/499401a
[7] 路保平, 李国华.俄罗斯萨哈林海洋钻井总承包工程[M].东营: 中国石油大学出版社, 2009. LU Baoping, LI Guohua. Russia Sakhalin offshore drilling EPC project[M]. Dongying: China University of Petroleum Press, 2009.
[8] 卢景美,邵滋军,房殿勇,等. 北极圈油气资源潜力分析[J]. 资源与产业,2010,12(4):29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007 LU Jingmei, SHAO Zijun, FANG Dianyong, et al. Analysis of oil-gas resources potential in the Arctic circle[J]. Resources & Industries, 2010, 12(4): 29–33. doi: 10.3969/j.issn.1673-2464.2010.04.007
[9] 郭晓琼. 中俄经贸合作新进展及未来发展趋势[J]. 俄罗斯学刊,2016(3):10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002 GUO Xiaoqiong. New progress in economic and trade cooperation between China and Russia and the future development trend[J]. Academic Journal of Russian Studies, 2016(3): 10–18. doi: 10.3969/j.issn.2095-1094.2016.03.002
[10] WINKLER M M. Frontier Arctic offshore exploration drilling business challenge[R]. OTC 29144, 2018.
[11] Eurasia Group. Opportunities and challenges for Arctic oil and gas development[R]. OTC 24586, 2014.
[12] SOUTHAM A L. the impact of non-technical risks on oil and gas activities in Alaska’s Arctic[R]. SPE 166811, 2013.
[13] FEBBO E, PAYNE K, REEP B. Technology and innovation for environmental monitoring on Alaska’s North Slope[R]. SPE 184471, 2017.
[14] SMITS C C, HUBER E. A social license to operate in the Arctic: exploring the challenges and opportunities for offshore oil and gas a ctivities in Greenland[R]. SPE 179343, 2016.
[15] CHOU Q, MURTAZA M, MAMMADOV E, et al. Arctic drilling hazard identification relating to salt tectonics[R]. OTC 27396, 2016.
[16] 党学博,李怀印. 北极海洋工程模式及关键技术装备进展[J]. 石油工程建设,2016,42(4):1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001 DANG Xuebo, LI Huaiyin. Offshore engineering modes and key technologies in Arctic[J]. Petroleum Engineering Construction, 2016, 42(4): 1–6. doi: 10.3969/j.issn.1001-2206.2016.04.001
[17] 孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002 SUN Baojiang. Progress and prospect of key equipment for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi: 10.3969/j.issn.1001-0890.2013.03.002
[18] LI Huaiyin, DANG Xuebo, ZHU Kai. Review and outlook on Arctic offshore facilities & technologies[R]. OTC 25541, 2015.
[19] 杨进,路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术,2017,45(5):1–7. YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
[20] FENG Wen, JAMES B, CHEUNG T O, et al. Study on the material properties of aged steel exposed to the Arctic environment[R]. OTC 29161, 2018.
[21] NEAL P, FELIPE M, JOHN E, et al. Shallow water subsea drilling and production structure to resist sand and ice keel intrusion in Arctic environments[R]. OTC 27440, 2016.
[22] JI Guodong, WANG Haige, WANG Lingbi, et al. Current situation and development trend of Arctic drilling equipment[R]. ISOPE-I-13-184, 2013.
[23] UTVIK T I, JAHRE-NILSEN C. The importance of early identification of safety and sustainability related risks in Arctic oil and gas operations[R]. SPE 179325, 2016.
[24] TORSÆTER M, CERASI P. Mud-weight control during Arctic drilling operations[R]. OTC 25481, 2015.
[25] XIE Jueren, MATTHEWS C M. Methodology to assess thaw subsidence impacts on the design and integrity of oil and gas wells in Arctic regions[R]. SPE 149740, 2011.
[26] ANDREY B, GURBAN V, STANISLAV K, et al. Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of Western Siberia (Russian Federation)[R]. OTC 24617, 2014.
[27] 周波,杨进,张百灵,等. 海洋深水浅层地质灾害预测与控制技术[J]. 海洋地质前沿,2012,28(1):51–54. ZHOU Bo, YANG Jin, ZHANG Bailing, et al. Prediction and control technology of shallow geological hazards in deepwater area[J]. Marine Geology Frontiers, 2012, 28(1): 51–54.
[28] 李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095 LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095
[29] 李鸿涛,陶平安,王志忠,等. ZJ40/2250DBG低温轨道钻井装备的研制[J]. 石油机械,2014,42(11):64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016 LI Hongtao, TAO Pingan, WANG Zhizhong, et al. Development of ZJ40 /2250DBG low-temperature track drilling rig[J]. China Petroleum Machinery, 2014, 42(11): 64–68. doi: 10.3969/j.issn.1001-4578.2014.11.016
[30] KAMATOV K. Hybrid drill bit for horizontal drilling in highly interbedded formations of timano-pechora Arctic fields[R]. SPE 166841, 2013.
[31] 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8. doi: 10.11911/syztjs.2019069 GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8. doi: 10.11911/syztjs.2019069
[32] 黄文君,石小磊,高德利. 基于钻井延伸极限的管柱分段优化设计方法[J]. 石油机械,2020,48(4):1–8. HUANG Wenjun, SHI Xiaolei, GAO Deli. Piecewise optimal design method of tubular strings based on extended-reach drilling limits[J]. China Petroleum Machinery, 2020, 48(4): 1–8.
[33] CHEN Wei, SHEN Yuelin, CHEN Rongbing, et al. Simulating drillstring dynamics motion and post-buckling state with advanced transient dynamics model[J]. SPE Drilling & Completion, 2021: 1–15. doi: https://doi.org/10.2118/199557-PA
[34] BUI B T, TUTUNCU A N. A generalized rheological model for drilling fluids with cubic splines[J]. SPE Drilling & Completion, 2015, 31(1): 26–39.
[35] MAHMOUD O, NASR-EL-DIN H A, VRYZAS Z, et al. Effect of ferric oxide nanoparticles on the properties of filter cake formed by calcium bentonite-based drilling muds[J]. SPE Drilling & Completion, 2018, 33(4): 363–376.
[36] 刘华南.冻土层钻探低温泡沫冲洗液的研究[D].长春: 吉林大学, 2016. LIU Huanan. Research on low temperature foam flushing fluid used in frozen soil layer drilling[D]. Changchun: Jilin University, 2016.
[37] WINKLER M M, JAHRE-NILSEN C. Arctic response technology JIP key achievements and final deliverables[R]. OTC 29120, 2018.
[38] RAKHMANGULOV R, EVDOKIMOVA I, DOBROKHLEB P, et al. Entering the Arctic gate: high end drilling at the high latitude[R]. SPE 181922, 2016.
[39] HASLING J F. Predicting the timing and duration of Arctic sea ice and its implications on future drilling seasons in the Chukchi Sea and Beaufort Sea[R]. OTC 27443, 2016.
[40] EFIMOV Y O, KORNISHIN K A, SOCHNEV O Y, et al. Evaluation of exploration drilling scenarios in the southwestern part of the Kara Sea[R]. ISOPE-I-20-1272, 2020.
[41] GUZENKO R B, MIRONOV Y U, KHARITONOV V V, et al. Complex study of large ice features and assessment of morphometric, physical-strength and age characteristics of a composite ice ridge[R]. ISOPE-I-20-1260, 2020.
[42] ISRAEL R, McCRAE D, SPERRY N, et al. Delivering drilling automation II: novel automation platform and wired drill pipe deployed on Arctic drilling operations[R]. SPE 191574, 2018.
[43] LAI S W, NG J, EDDY A, et al. Large-scale deployment of a closed-loop drilling optimization system: implementation and field results[J]. SPE Drilling and Completion, 2021, 36(1): 47–62. doi: 10.2118/199601-PA
[44] WILSON A. Automated operations and wired drillpipe benefit Arctic drilling[J]. Journal of Petroleum Technology, 2019, 71(2): 62–64. doi: 10.2118/0219-0062-JPT
[45] GOVINDU A, AHMED R, SHAH S, et al. The effect of inclination on the stability of foam systems in drilling and well operations[J]. SPE Drilling & Completion, 2020: 1–18. doi: https://doi.org/10.2118/199821-PA
[46] KINIK K, GUMUS F, OSAYANDE N. Automated dynamic well control with managed-pressure drilling: a case study and simulation analysis[J]. SPE Drilling & Completion, 2015, 30(2): 110–118.
[47] STAVE R, FOSSLI B, ENDRESEN C, et al. Exploration drilling with riserless dual gradient technology in Arctic waters[R]. OTC 24588, 2014.
-
期刊类型引用(5)
1. 王中义,孙金声,黄贤斌,吕开河. LCST型温度敏感聚合物的研究及其在钻井液领域的应用进展. 精细化工. 2024(10): 2103-2119 . 百度学术
2. 李春,颜波,刘洪波,王飞,关庆龄. 极地海洋油气钻井装备发展概述. 船舶与海洋工程. 2024(05): 5-10 . 百度学术
3. 马金龙,李继丰,刘惠惠. 俄罗斯北极陆上钻井技术挑战与关键技术. 采油工程. 2023(01): 54-59+85-86 . 百度学术
4. 范西哲,李晓,吴永川,张居贵,楼一珊,刘善勇,朱亮. 北极永冻区钻井地层压力预测方法. 天然气工业. 2022(03): 99-105 . 百度学术
5. 王磊,胡志强,柯珂,张辉,李莅临,闫莉. 极地冷海浅层天然气水合物地层声学特性模拟实验研究. 中国海上油气. 2022(04): 218-224 . 百度学术
其他类型引用(2)