缝面摩滑:深部裂缝性地层钻井液漏失加剧的新机制

康毅力, 田国丰, 游利军, 闫霄鹏, 许成元

康毅力, 田国丰, 游利军, 闫霄鹏, 许成元. 缝面摩滑:深部裂缝性地层钻井液漏失加剧的新机制[J]. 石油钻探技术, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
引用本文: 康毅力, 田国丰, 游利军, 闫霄鹏, 许成元. 缝面摩滑:深部裂缝性地层钻井液漏失加剧的新机制[J]. 石油钻探技术, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
Citation: KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033

缝面摩滑:深部裂缝性地层钻井液漏失加剧的新机制

基金项目: 四川省科技计划项目“保护储层并改善优势天然裂缝导流能力的钻井预撑裂缝堵漏基础研究”(编号:2018JY0436)、国家自然科学基金“基于逾渗和固液两相流理论的裂缝性储层工作液漏失损害预测与控制”(编号:51604236)和非常规油气层保护四川省青年科技创新研究团队项目(编号:2016TD0016)联合资助
详细信息
    作者简介:

    康毅力(1964—),男,天津蓟县人,1986年毕业于大庆石油学院石油地质与勘探专业,1989年获西南石油学院矿产普查与勘探专业硕士学位,1998年获西南石油学院石油与天然气工程专业博士学位,教授,博士生导师,主要从事储层保护理论与技术方向的研究工作。系本刊编委。E-mail:cwctkyl@163.com

  • 中图分类号: TE21

Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs

  • 摘要: 针对深层裂缝性地层在初次堵漏失败后多发生漏失量更大的重复性漏失的问题,设计并进行了裂缝面间摩擦滑动(简称缝面摩滑)前后的裂缝封堵模拟试验,以钻井液环境下岩板与岩块的摩擦滑动试验、基于微压痕的岩石力学参数测试、表面三维扫描等手段为辅,分析了钻井液侵入对天然裂缝缝面摩滑的诱发作用,探讨了缝面摩滑对裂缝性储层钻井液漏失的影响。油基钻井液或水基钻井液侵入天然裂缝,均能使岩石缝面摩擦因数减小,油基钻井液使岩石缝面摩擦因数减小的作用更强,这会诱发缝面摩滑形成错位裂缝,为钻井液漏失加剧提供通道和空间;缝面摩滑可使裂缝渗透率升高,导致钻井液封堵能力降低,钻井液漏失加剧;摩滑后缝面更光滑,可能会进一步扩大错位程度,使裂缝长度和宽度大幅增大,造成钻井液漏失加剧。研究结果表明,缝面摩滑是导致深部裂缝性地层钻井液漏失加剧的原因之一,提高天然裂缝面之间的摩擦因数、有效控制缝面摩滑可控制深部裂缝性地层的钻井液漏失。
    Abstract: Because repetitive leakage in greater volume often occurs in deep fractured reservoirs after the failure of initial plugging, fracture plugging simulation before and after the sliding with friction happens on fracture surfaces (referred to as friction & sliding on fracture surfaces) was designed and carried out. Supported by the friction & sliding experiments of rock plates and blocks in drilling fluid environment, rock mechanics parameter test based on micron indentation and the three-dimensional surface scanning, the inducing effect of drilling fluid intrusion on the friction & sliding on fracture surfaces was analyzed, and the influence on drilling fluid leakage in fractured reservoirs brought by friction & sliding on fracture surfaces was explored. Experiments showed that when the drilling fluid invaded natural fractures, both oil-base and water-base drilling fluids could decrease the friction factors of fractured rock surfaces, and the oil-base drilling fluid could brought a stronger effect, which would induce friction & sliding on fracture surfaces to form dislocated fractures, providing channels and space for the aggravation of drilling fluid leakage. Also, friction & sliding on fracture surfaces can increase the permeability of fractures, resulting in a decrease in the plugging capacity of drilling fluid and increasing drilling fluid leakage. Moreover, fracture surfaces were smoother after friction & sliding, which may further intensify the degree of dislocation. With the huge increase in the length and width of fractures, the leakage of drilling fluid was exacerbated. The research results showed that friction & sliding on fracture surfaces was one of the reasons for the exacerbation of drilling fluid leakage in deep fractured reservoirs. Drilling fluid leakage in deep fractured reservoirs could be controlled by increasing the friction factors of natural fracture surfaces and effectively controlling the friction & sliding on fracture surfaces.
  • 图  1   岩石缝面摩擦因数测量装置[13]

    1.圆形岩片;2.砝码;3.岩板;4.浸泡液体;5.恒温系统;6.拉杆;7.位移传感器;8.拉力传感器;9.驱动杆;10.牵引支架;11.直线滑轨;12.电动机;13.平台;14.计算机

    Figure  1.   Measuring device for friction factors of rock fracture surfaces [13]

    图  2   岩样在不同钻井液滤液浸泡前后缝面摩擦力与时间的曲线

    Figure  2.   The curve of friction force on fracture surfaces of rock samples with time before and after soaking in different drilling fluids

    图  3   试验岩样

    Figure  3.   Experimental rock samples

    图  4   裂缝岩样初始渗透率随流体压力的变化曲线

    Figure  4.   The change curve of initial permeability of fractured rock samples with fluid pressure

    图  5   裂缝岩样端面封堵情况

    Figure  5.   Results of end face plugging in fractured rock samples

    图  6   裂缝岩样累计滤失量随时间的变化曲线

    Figure  6.   The change curve of cumulative filtration loss in fractured rock samples with time

    图  7   微米压痕试验结果

    Figure  7.   Test results of micron indentation

    图  8   诱导裂缝与天然裂缝相交示意[11]

    Figure  8.   Intersection of induced fractures and natural fractures[11]

    图  9   不同缝面摩擦因数对临界孔隙压力的影响

    Figure  9.   Effects of different friction factors of fracture surfaces on critical pore pressure

    图  10   裂缝性地层钻井液漏失示意

    Figure  10.   Drilling fluid leakage in fractured reservoirs

    图  11   基于白光干涉的岩样表面三维扫描

    Figure  11.   Three-dimensional surface scanning of rock samples based on white light interference

    图  12   扫描区域的微凸体高度统计直方图

    Figure  12.   Statistical histogram of asperity height in scanning regions

    表  1   岩样不同环境下缝面摩擦因数测量结果

    Table  1   Measurement results of friction factors of rock fracture surfaces under different situations

    岩样
    编号
    试验环境浸泡流体最大静摩擦
    因数μ0
    动摩擦
    因数μ1
    浸泡时
    间/d
    C-1干燥0.630.580
    滤液浸泡水基钻井
    液滤液
    0.550.533
    C-2干燥0.600.590
    滤液浸泡油基钻井
    液滤液
    0.550.483
    下载: 导出CSV
  • [1] 臧艳彬,王瑞和,张锐. 川东北地区钻井漏失及堵漏措施现状分析[J]. 石油钻探技术,2011,39(2):60–64. doi: 10.3969/j.issn.1001-0890.2011.02.011

    ZANG Yanbin, WANG Ruihe, ZHANG Rui. Current situation analysis of circulation lost and measures in Northeast Sichuan Basin[J]. Petroleum Drilling Techniques, 2011, 39(2): 60–64. doi: 10.3969/j.issn.1001-0890.2011.02.011

    [2]

    KANG Yili, YOU Lijun, XU Xinghua, et al. Prevention of formation damage induced by mud lost in deep fractured tight gas reservoir in Western Sichuan Basin[J]. Journal of Canadian Petroleum Technology, 2012, 51(1): 46–51. doi: 10.2118/131323-PA

    [3] 张杜杰,金军斌,陈瑜,等. 深部裂缝性致密储层随钻堵漏材料补充时机研究[J]. 特种油气藏,2020,27(6):158–164.

    HANG Dujie, JIN Junbin, CHEN Yu, et al. Study on the supplement timing of leakage stoppage materials while drilling for deep fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 158–164.

    [4] 王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15.

    WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15.

    [5] 周志世,张震,张欢庆,等. 长裸眼多层系砂泥岩互层井底断层洞穴裂缝失返井漏桥接堵漏工艺技术[J]. 钻井液与完井液,2020,37(4):456–464.

    ZHOU Zhishi, ZHANG Zhen, ZHANG Huanqing, et al. Controlling mud losses into caves with bridging techniques in ultra-deep long open hole[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 456–464.

    [6] 李冬梅,柳志翔,李林涛,等. 顺北超深断溶体油气藏完井技术[J]. 石油钻采工艺,2020,42(5):600–605.

    LI Dongmei, LIU Zhixiang, LI Lintao, et al. Well completion technologies for the ultra-deep fault-dissolved oil and gas reservoir in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2020, 42(5): 600–605.

    [7] 王维斌,马廷虎,邓团. 川东宣汉–开江地区恶性井漏特征及地质因素[J]. 天然气工业,2005,25(2):90–92. doi: 10.3321/j.issn:1000-0976.2005.02.029

    WANG Weibin, MA Tinghu, DENG Tuan. Characteristics and geological factors of vicious lost circulation in Xuanhan-Kaijiang Area of East Sichuan[J]. Natural Gas Industry, 2005, 25(2): 90–92. doi: 10.3321/j.issn:1000-0976.2005.02.029

    [8] 杨振杰. 国外礁灰岩漏失地层钻井技术[J]. 钻井液与完井液,2004,21(1):45–49. doi: 10.3969/j.issn.1001-5620.2004.01.014

    YANG Zhenjie. Drilling technology for biolithite loss zone abroad[J]. Drilling Fluid & Completion Fluid, 2004, 21(1): 45–49. doi: 10.3969/j.issn.1001-5620.2004.01.014

    [9]

    MAURY V, GUENOT A. Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion, 1995, 10(1): 42-48.

    [10]

    YAN Wei, GE Hongkui, WANG Jianbo, et al. Experimental study of the friction properties and compressive shear failure behaviors of gas shale under the influence of fluids[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 153–161. doi: 10.1016/j.jngse.2016.04.019

    [11] 邹雨时,张士诚,马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程,2013,13(18):5152–5157. doi: 10.3969/j.issn.1671-1815.2013.18.013

    ZOU Yushi, ZHANG Shicheng, MA Xinfang. Research on the formation conditions and conductivity of shear fracture for hydraulic fracturing in gas-shale[J]. Science Technology and Engineering, 2013, 13(18): 5152–5157. doi: 10.3969/j.issn.1671-1815.2013.18.013

    [12]

    FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001, 6(3): 288–298. doi: 10.2118/74138-PA

    [13]

    YAN Xiaopeng, YOU Lijun, KANG Yili, et al. Impact of drilling fluids on friction coefficient of brittle gas shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 144–152. doi: 10.1016/j.ijrmms.2018.04.026

    [14]

    YOU Lijun, KANG Yili, CHEN Zhangxin, et al. Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 294–299. doi: 10.1016/j.ijrmms.2014.08.017

    [15] 康毅力,佘继平,林冲,等. 钻井完井液浸泡弱化页岩脆性机制[J]. 力学学报,2016,48(3):730–738. doi: 10.6052/0459-1879-15-286

    KANG Yili, SHE Jiping, LIN Chong, et al. Brittleness weakening mechanisms of shale soaked by drilling & completion fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 730–738. doi: 10.6052/0459-1879-15-286

    [16] 康毅力, 游利军, 李大奇, 等. 高温高压钻井液漏失动态评价仪: CN201210023152.4[P]. 2012-02-02.

    KANG Yili, YOU Lijun, LI Daqi, et al. High temperature and high pressure drilling fluid leakage dynamic evaluation instrument: CN201210023152.4[P]. 2012-02-02.

    [17] 陈平,韩强,马天寿,等. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发,2015,42(5):662–670.

    CHEN Ping, HAN Qiang, MA Tianshou, et al. The mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 2015, 42(5): 662–670.

    [18]

    CHAN A W, HAUSER M, COUZENS-SCHULTZ B A, et al. An alternative interpretation of leakoff and lost circulation pressure measurements[R]. ARMA-2013-302, 2013.

    [19]

    COUZENS-SCHULTZ B A, CHAN A W. Stress determination in active thrust belts: an alternative leak-off pressure interpretation[J]. Journal of Structural Geology, 2010, 32(8): 1061–1069. doi: 10.1016/j.jsg.2010.06.013

    [20] 黄元敏,马胜利,杨马陵. 不同岩性下水对断层摩擦性状影响的实验研究[J]. 地震,2015,35(4):21–29. doi: 10.3969/j.issn.1000-3274.2015.04.003

    HUANG Yuanmin, MA Shengli, YANG Maling. Experimental study of water effect on frictional characteristics for different lithology[J]. Earthquake, 2015, 35(4): 21–29. doi: 10.3969/j.issn.1000-3274.2015.04.003

    [21] 韩秀玲,杨贤友,熊春明,等. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学,2017,28(8):1280–1286.

    HAN Xiuling, YANG Xianyou, XIONG Chunming, et al. Influencing factors and efficient reservoir stimulation countermeasuresin thick and ultra-deep naturally fractured reservoir[J]. Natural Gas Geoscience, 2017, 28(8): 1280–1286.

    [22] 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009: 172–182.

    CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: University of Science and Technology of China Press, 2009: 172–182.

    [23]

    ZHANG Huijie, LIU Shuhai, XIAO Huaping. Frictional behavior of sliding shale rock-silica contacts under guar gum aqueous solution lubrication in hydraulic fracturing[J]. Tribology International, 2018, 120: 159–165. doi: 10.1016/j.triboint.2017.12.044

    [24] 高文龙,姜耀东,湛川. 软弱结构面表面形态与充填度的力学特性研究[J]. 工程地质学报,2010,18(1):127–131. doi: 10.3969/j.issn.1004-9665.2010.01.019

    GAO Wenlong, JIANG Yaodong, ZHAN Chuan. The study of structural-plane based on appearance and backfilling state[J]. Journal of Engineering Geology, 2010, 18(1): 127–131. doi: 10.3969/j.issn.1004-9665.2010.01.019

    [25] 雷国辉, 陈晶晶. 有效应力决定饱和岩土材料抗剪强度的摩擦学解释[J]. 岩土工程学报, 2011, 33(10): 1517-1525.

    LEI Guohui, CHEN Jingjing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chi-nese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.

    [26] 曾义金,李大奇,杨春和. 裂缝性地层防漏堵漏力学机制研究[J]. 岩石力学与工程学报,2016,35(10):2054–2061.

    ZENG Yijin, LI Daqi, YANG Chunhe. Leakage prevention and control in fractured formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2054–2061.

    [27] 俞杨烽. 富有机质页岩多尺度结构描述及失稳机理[D]. 成都: 西南石油大学, 2013: 61–80.

    YU Yangfeng. Multi-scale structure description and borehole instability mechanism of organic rich shale[D]. Chengdu: Southwest Petroleum University, 2013: 61–80.

    [28] 李鹏,刘建,李国和,等. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学,2011,32(2):380–386. doi: 10.3969/j.issn.1000-7598.2011.02.010

    LI Peng, LIU Jian, LI Guohe, et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics, 2011, 32(2): 380–386. doi: 10.3969/j.issn.1000-7598.2011.02.010

    [29]

    WITHERSPOON P A, WANG J S Y, IWAI K, et al. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016–1024. doi: 10.1029/WR016i006p01016

    [30] 王剑波. 页岩储层缝面摩擦滑动特性研究[D]. 北京: 中国石油大学(北京), 2016: 61-62.

    WANG Jianbo. Study on frictional sliding characteristics of fracture surface of shale reservoir[D]. Beijing: China University of Petroleum(Beijing), 2016: 61-62.

  • 期刊类型引用(2)

    1. 笱顺超,杨顺智,王飞,刘俊,王斌,袁晓琪. 苏里格西区含水气藏识别方法研究. 内蒙古石油化工. 2024(07): 102-105+116 . 百度学术
    2. 刘昊年,刘成川,黎华继,马增彪. 川西坳陷东坡低电阻率储层特征及主控因素. 天然气技术与经济. 2017(06): 1-3+8+81 . 百度学术

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  299
  • PDF下载量:  84
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-02-20
  • 修回日期:  2021-08-14
  • 网络出版日期:  2021-11-14
  • 刊出日期:  2022-03-06

目录

    /

    返回文章
    返回