Loading [MathJax]/jax/output/SVG/jax.js

深水浊积岩油藏提高采收率方法研究

牟汉生, 陆文明, 曹长霄, 宋兆杰, 石军太, 张洪

牟汉生, 陆文明, 曹长霄, 宋兆杰, 石军太, 张洪. 深水浊积岩油藏提高采收率方法研究[J]. 石油钻探技术, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
引用本文: 牟汉生, 陆文明, 曹长霄, 宋兆杰, 石军太, 张洪. 深水浊积岩油藏提高采收率方法研究[J]. 石油钻探技术, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
Citation: MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025

深水浊积岩油藏提高采收率方法研究

基金项目: 国家科技重大专项“安哥拉深水浊积岩油藏高效开发技术”(编号:2016ZX05033-003-005)部分研究内容
详细信息
    作者简介:

    牟汉生(1968—),男,湖北利川人,1989年毕业于石油大学(华东)地质勘查专业,高级工程师,主要从事油气田开发方面的相关工作。E-mail:hsmu.sipc@sinopec.com。

Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola

  • 摘要: 深水浊积岩油藏储层非均质性强,平面矛盾突出,注水开发过程中易出现油水前缘不稳定,形成窜流。气为明确气水交替驱与氮气泡沫驱在平面非均质油藏的适用性及其提高采收率机制,结合油藏地质资料,设计制作了不同渗透率级差的岩心模型,开展了气水交替驱和氮气泡沫驱试验,分析了2种提高采收率方法的驱油效果,结合数值模拟研究,探索了驱替过程中不同渗透率条带的流体波及规律。研究结果表明,当岩心模型渗透率级差较小时,气水交替驱可表现出良好的提高波及系数及降低出口端含水率的能力,但当岩心模型渗透率级差较大时,该方法控制气体流度能力降低,提高采收率效果变差。氮气泡沫驱在岩心模型渗透率级差较大时,仍可发挥泡沫堵大不堵小、堵水不堵油以及表面活性剂洗油的多重特性,有效抑制高渗条带中的流体窜逸,使氮气泡沫在低渗条带呈现活塞式驱替,从而实现深部调驱、大幅度提高采收率的目的。因此,氮气泡沫驱可有效提高深水浊积岩油藏采收率,为该类油藏的经济高效开发提供技术支持。
    Abstract: Due to severe planar-heterogeneity, water-displacing-oil front in deep-water turbidite reservoirs is unstable and may cause water channeling during water flooding. In order to investigate the feasibility and enhanced oil recovery mechanisms of water and gas alternating flooding and nitrogen foam flooding in planar-heterogeneous reservoirs, artificial core samples with different permeability contrasts were designed according to the geological data in core flooding experiments. Based on the history matching of experimental data via numerical simulation, fluid flow behavior was discussed in the heterogeneous core samples. The results showed that water and gas alternating flooding presented good ability in improving sweep efficiency and reducing water cut when the permeability contrast was small; however, its ability in controlling gas mobility was depressed and the enhanced oil recovery effect was decreased when the permeability contrast was large. Due to the selective plugging of nitrogen foam and the surfactant’s improving displacement efficiency, nitrogen foam flooding could still delay fluid channeling in high-permeability streaks of severe planar-heterogeneous core samples while presented the piston-like displacement in low-permeability streaks so as to achieve in-depth profile control and oil recovery improvement. Thus, nitrogen foam flooding could effectively enhance oil recovery in deep-water turbidite reservoirs and provide technical support for the economical and efficient development of such reservoirs.
  • 随着固井技术的发展,超低密度水泥浆得到广泛应用[1-2],尤其是针对低压易漏、密度窗口窄的层位,超低密度水泥浆解决了水泥返高不够、固井漏失等问题,并显著提高了固井质量[3]。如东胜气田储层是典型的低压、低渗、致密层段,由于地层承压能力低,钻井、固井过程中易发生漏失,杭锦旗区块刘家沟组、石千峰组等地层的承压当量密度最低达1.10 kg/L,通过应用超低密度水泥浆,降低了固井漏失率,保证了水泥返高。但超低密度水泥浆的应用也给固井质量评价带来了一系列难题[4-5]。首先是超低密度水泥环的强度、声学特性与测井响应的关系不明确,一方面,随着水泥环密度的降低,其强度和声速也降低,套管与水泥环交界面的声耦合性就会变差,声幅测井响应表现为套管波变强,地层波变弱[6-8];另一方面,漂珠等减轻材料对水泥环的强度和声学特性有一定的影响。其次是超低密度水泥浆固井质量评价指标不明确[9-11],现有标准《固井质量评价方法》(SY/T 6592—2016)只给出了水泥浆密度在1.30 kg/L以上的固井质量评价相对声幅,对于密度低于1.30 kg/L的超低密度水泥浆无明确的评价指标[6];国内外学者针对低密度水泥浆固井质量评价方法进行了大量研究,但未系统研究超低密度水泥浆固井质量评价方法。为此,笔者通过开展室内试验研究,揭示超低密度水泥石的强度和声学特性,结合理论分析,开展了超低密度水泥浆固井质量评价方法研究,得出了科学的评价指标,可准确评价超低密度水泥浆固井质量,为后续作业决策提供科学依据,为安全成井提供技术支持。

    试验材料主要包括G级油井水泥、漂珠1、漂珠2、漂珠3、微硅、降滤失剂、分散剂和水等,全部材料及配方均与现场保持一致。

    试验仪器主要包括高速搅拌器、密度计、六速旋转黏度仪、稠化仪、高温高压滤失仪、恒温养护釜、抗压强度测试仪和声速测试仪等。

    首先,设计不同密度的水泥浆配方(设计的7种配方见表1),并配制得到水泥浆;然后,按照《油井水泥性能试验方法》(SY/T 6466—2016)测试和验证不同密度水泥浆的基础性能,包括密度、流变性、滤失量和稠化时间等[12];最后,将配制好的水泥浆体注入多组5cm×5cm×5cm养护模具中,分别置于25,50和80 ℃的水浴中养护18,24,48,72,120,240和720 h后,测量养护试块的抗压强度、纵波声速和横波声速。

    表  1  声学和强度特性试验用超低密度水泥浆配方
    Table  1.  Formula of ultra-low-density cement slurry for measurement of acoustic and strength properties
    配方密度/(kg·L−1 水泥浆各成分含量,%
    G级水泥漂珠1漂珠2微珠3微硅早强剂降滤失剂减阻剂
    11.1010030034302504.505.000.30
    21.1510030030302454.004.500.30
    31.2010027250201804.004.000.30
    41.2510025220201404.003.500.25
    51.331003600101203.301.400.20
    61.5010015005704.004.000.30
    71.90100 00004400.500.10
    下载: 导出CSV 
    | 显示表格

    温度是影响超低密度水泥石强度和声学特性发展规律的重要因素[13-15]。以密度1.33 kg/L的超低密度水泥浆为例,按照1.2节所述试验方法,得出各项试验数据,并绘制得到水泥石抗压强度和纵横波声速发展曲线(见图1图2)。从图1图2可以看出,水泥石的抗压强度、纵波声速和横波声速均与养护时间正相关,且在较短时间内抗压强度和声速就会达到较大值,之后抗压强度和声速增大趋势变缓并逐渐趋于稳定。水泥石抗压强度和声速的发展速率与温度同样呈正相关关系,即温度越高,水泥石抗压强度和声速趋于稳定的时间越短。水泥石在50和80 ℃温度下养护 72 h后,其抗压强度和声速基本可达到养护720 h时的85%以上;但在25 ℃温度下养护200 h时的抗压强度和声速才能达到养护720 h时的85%以上;养护200 h以后,抗压强度和声速不同养护温度下的发展规律基本一致。

    图  1  密度 1.33 kg/L水泥石抗压强度发展曲线
    Figure  1.  Compressive strength of cement stone with a density of 1.33 kg/L
    图  2  密度1.33 kg/L水泥石纵横波声速发展曲线
    Figure  2.  Acoustic velocities of P-waves and S-waves of cement stone with density of 1.33 kg/L

    以上研究表明,温度是影响水泥水化反应速率的重要因素,温度越高,水化反应速率越大,这就导致前期水泥石的抗压强度和声速变化速率受温度影响较大;但不同温度条件下的水泥水化产物类型基本相同,随着养护时间增长,水泥水化反应趋于稳定,表现为不同温度条件下抗压强度和纵横波声速的变化速率较小,且无限接近水泥石的最终抗压强度和声速,即养护后期其抗压强度和声速受温度影响不大[11]

    密度是影响超低密度水泥石强度和声学特性变化规律的另一重要因素。在养护温度80 ℃、养护时间72 h条件下,按照1.2节所述试验方法,测量表1中7个配方所对应水泥石的抗压强度和声速,根据所得数据绘制得到水泥石抗压强度和声速随水泥浆密度的变化曲线,见图3图4。由图3图4可以看出,在其他条件相同的情况下,超低密度水泥石的抗压强度和声速与水泥浆密度正相关,即水泥浆密度越高,抗压强度和纵横波声速越大。

    图  3  抗压强度与水泥浆密度的关系曲线
    Figure  3.  Relationship between compressive strength and cement slurry density
    图  4  纵横波声速与水泥浆密度的关系曲线
    Figure  4.  Relationship between cement slurry density and acoustic velocities of P-waves and S-waves

    分析认为,水泥浆的密度越高,水泥浆中的水泥含量越高,而漂珠等减轻材料含量就会越少,且水泥石更加致密,孔隙度更低,导致其抗压强度和纵横波声速随水泥浆密度升高而升高[13]

    水泥石抗压强度与声速正相关,通常抗压强度越高,对应的声速也越高。统计分析不同养护条件下的全部试验数据,对不同密度超低密度水泥浆形成水泥石的抗压强度和纵横波声速进行拟合,结果如图5图6所示。从图5图6可以看出,超低密度水泥石抗压强度与纵波、横波声速均呈指数关系。

    图  5  纵波声速与抗压强度的关系曲线
    Figure  5.  Relationship between acoustic velocity of P-wave and compressive strength
    图  6  横波声速与抗压强度的关系曲线
    Figure  6.  Relationship between acoustic velocity of S-wave and compressive strength

    图5图6的水泥石抗压强度与纵波、横波声速进行拟合,可得:

    p=aebvp (1)
    p=cedvs (2)

    式中:p为水泥石的抗压强度,MPa;vp为水泥石的纵波声速,m/s;vs为水泥石的横波声速,m/s。

    根据试验所得数据,得出抗压强度与纵横波声速的拟合关系,见表2

    表  2  纵横波声速与抗压强度的拟合关系式
    Table  2.  Fitting relationship between compressive strength and acoustic velocity of P-waves and S-waves
    序号密度/(kg·L–1声波速度与抗压强度关系式相关系数
    1 1.10 p=0.002e0.0039vp R2=0.989 5
    p=0.0019e0.0034vs R2=0.964 9
    2 1.15 p=0.0055e0.0034vp R2=0.941 7
    p=0.0145e0.0055vs R2=0.937 0
    3 1.20 p=0.0019e0.0035vp R2=0.891 2
    p=0.021e0.0045vs R2=0.860 7
    4 1.25 p=0.0618e0.0021vp R2=0.920 6
    p=0.0356e0.0041vs R2=0.955 4
    5 1.33 p=0.0035e0.0034vp R2=0.900 6
    p=0.0017e0.0067vs R2=0.911 3
    下载: 导出CSV 
    | 显示表格

    分析认为,水泥水化过程中,固相水化产物含量逐渐增多,孔隙度不断减小,抗压强度和声速均增大。水化反应前期,固相含量增加迅速,水泥石的孔隙度快速减小,造成声速快速增大,但此时水泥石整体骨架结构较弱,且水泥水化产物本身强度偏低,造成抗压强度的发展速率要慢于声速;水泥水化反应中后期,水泥石的固相含量已经趋于稳定,孔隙度变化小,但是水化产物本身的强度更高,水泥石的骨架结构也变得较强,导致水泥石声速增加较小,而抗压强度增幅较大。同时,减轻材料的种类和加量会对水泥石的强度和声速产生一定的影响,表现为不同体系水泥浆形成水泥石的强度和声学特性存在一定的差别[14]

    超低密度水泥石声学特性的差异性会影响测井响应,进而对固井质量评价指标的科学性造成一定影响[16],因此通过对比不同胶结指数下的声幅,对超低密度水泥浆固井质量评价相对声幅进行了定量校正。该超低密度水泥浆固井质量评价相对声幅改进算法原理为:根据不同密度水泥石的强度和声学特性进行模拟计算,找出不同胶结情况下超低密度水泥浆固井测井响应和常规密度水泥浆固井测井响应的差别,结合常规密度水泥浆固井质量评价指标,对超低密度水泥浆固井质量评价相对声幅进行校正。其具体过程如下:

    1)计算水泥完全胶结时的泄露兰姆波衰减率,计算公式为[16]

    αT=3.30ρh[(59002vp21)12+(59002vs21)12] (3)

    式中:αT为泄漏兰姆波衰减率,dB/m;ρ为固井水泥浆密度,g/cm3h为套管平板厚度,cm。

    为了建立固井质量评价相对声幅与抗压强度的关系,将式(1)、式(2)代入式(3),得到修正后的泄露兰姆波衰减率表达式:

    αT=3.30ρh[(5900b2(lnplna)21)12+(5900d2(lnplnc)21)12] (4)

    2)计算胶结中等的上限和下限声幅。分别计算胶结指数为0.8和0.6时的测井声幅:

    Af0.8=100.8(6.25+αT)l20A0 (5)
    Af0.6=100.6(6.25+αT)l20A0 (6)

    式中:l为测井源距,m;Af0.8为胶结指数为0.8时接收到的理论声幅,mV;Af0.6为胶结指数为0.6时接收到的理论声幅,mV;A0为发射器发射声波的声幅,mV。

    3)计算校正系数。根据式(1)—式(6),分别计算待校核密度水泥浆固井的理论测井声幅和常规密度水泥浆固井的理论测井声幅,并进行对比分析,得到改进系数:

    λ0.8=A3A1 (7)
    λ0.6=A4A2 (8)

    式中:λ0.8为胶结指数为0.8时对应的胶结质量中等下限的改进系数;λ0.6为胶结指数为0.6时对应的胶结质量中等上限的改进系数;A1为胶结指数为0.8时常规密度水泥浆固井接收到的理论声幅,mV;A2为胶结指数为0.6时常规密度水泥浆固井接收到的理论声幅,mV;A3为胶结指数为0.8时待校核密度水泥浆固井接收到的理论声幅,mV;A4为胶结指数为0.6时待校核密度水泥浆接收到的理论声幅,mV。

    4)校正超低密度水泥浆固井质量评价相对声幅。综合考虑改进系数和常规密度水泥浆固井质量评价相对声幅,得出改进后的超低密度水泥浆固井质量评价相对声幅。相对声幅≤0.15λ0.8时,为优质;0.15λ0.8<相对声幅≤0.30λ0.6时,为中等;相对声幅>0.30λ0.6时,为不合格。

    以东胜气田三级井身结构为参考,选取计算参数如下:测井源距1.00 m,套管外径177.8 mm,套管壁厚10.36 mm。结合表2中超低密度水泥石抗压强度与声速关系的拟合关系式,校正超低密度水泥浆固井质量评价相对声幅,得到基于抗压强度的超低密度水泥浆固井质量评价相对声幅校正图版(见图7)。

    图  7  基于抗压强度的超低密度水泥固井质量评价相对声幅校正图版
    Figure  7.  Calibration type-curve of relative acoustic amplitude for cementing quality evaluation of ultra-low-density cement based on compressive strength

    图7可以看出:1)对于同一密度水泥浆,固井质量评价相对声幅随抗压强度升高而减小,即抗压强度越高,相对声幅越小,但当抗压强度升至一定值时,相对声幅趋于稳定;2)相同抗压强度条件下,固井质量评价相对声幅随着水泥浆密度升高而减小,即水泥浆密度越高,相对声幅越小。

    为了验证该方法的可靠性,用其校核密度为1.33 kg/L的超低密度水泥浆固井质量评价相对声幅,按照井底温度为80 ℃、测井时间为72 h计算,此时评价中等的相对声幅在23.0%~43.5%,与行业标准《固井质量评价方法》(SY/T 6592—2016)给出的评价中等的相对声幅22%~45%较为接近,且校核后的评价相对声幅范围更小,具有较好的针对性。

    实际应用时,首先根据井内温度设置水泥石试块养护条件;然后根据现场测井时间安排,测量同等养护时间下水泥石的抗压强度;最后根据图版校核评价相对声幅。如东胜气田72井区某井为二开结构定向井,二开钻井过程中多次发生漏失,为了防止固井漏失,采用密度1.15 kg/L的水泥浆作为领浆,封固0~2 332 m井段,固井过程中未见明显漏失,水泥浆一次上返至地面。根据测井时间为72 h和井底温度为70℃等固井质量评价条件,可知室内同等养护条件下水泥石的抗压强度约为7.3 MPa,应用校核图版,得到超低密度水泥浆封固段固井质量评价优质的相对声幅为不大于27%,评价中等的相对声幅为27%~44%,评价差的相对声幅大于44%。

    采用此评价相对声幅进行该段固井质量评价,0~340 m井段相对声幅平均为41%,评价为中等;340~1 060 m井段相对声幅平均为32%,评价为中等;1 060~1 990 m井段相对声幅平均为20%,评价为优质;1 990~2 332 m井段相对声幅平均为10%,评价为优质。超低密度水泥浆固井的优质井段占比达46.7%,固井质量整体评价为优质。该井固井施工过程中未见漏失,后期测试、采气等作业环节中未发现管外气窜和井口带压现象,说明固井质量满足生产要求。

    1)通过室内试验,揭示了超低密度水泥石的抗压强度、纵横波声速与温度和密度等参数正相关,且超低密度水泥石的纵横波声速与抗压强度存在较好的指数关系。但对于不同密度的水泥浆体系,回归出的关系式存在着一定的差异。

    2)根据理论分析结果,建立了校核超低密度水泥浆固井质量评价相对声幅的方法,并给出了具体操作步骤,操作简单、方便,与水泥浆的对应性强。

    3)建立了基于抗压强度的超低密度水泥浆固井质量评价相对声幅校核图版,明确了相对声幅与抗压强度和密度的关系,现场应用方便,可根据测井时间和井内环境精确计算出超低密度浆固井质量评价相对声幅,提高固井质量评价的准确性和时效性。

  • 图  1   X油藏浊积水道分布示意

    Figure  1.   Turbidity channel distribution of X reservoir

    图  2   非均质岩心实物

    Figure  2.   Heterogeneous core samples

    图  3   气水交替驱和氮气泡沫驱试验装置

    Figure  3.   Experimental set-up of water and gas alternating flooding and nitrogen foam flooding

    图  4   不同注采方式下X-1型岩心采出程度随注入体积的变化关系

    Figure  4.   Relationship of oil recovery percentage and injected volume in different injection methods of X-1 core

    图  6   不同注采方式下X-1型岩心出口端含水率随注入体积的变化关系

    Figure  6.   Relationship of water cut and injected volume in different injection methods of X-1 core

    图  5   不同注采方式下X-1型岩心驱替压差随注入体积的变化关系

    Figure  5.   Relationship of displacement pressure and injected volume in different injection methods of X-1 core

    图  7   不同注采方式下X-2型岩心采出程度随注入体积的变化关系

    Figure  7.   Relationship of oil recovery percentage and injected volume in different injection methods of X-2 core

    图  8   不同注采方式下X-2型岩心驱替压差随注入体积的变化关系

    Figure  8.   Relationship of displacement pressure and injected volume in different injection methods of X-2 core

    图  9   不同注采方式下X-2型岩心出口端含水率随注入体积的变化关系

    Figure  9.   Relationship of water cut and injected volume in different injection methods of X-2 core

    图  10   气水交替驱和氮气泡沫驱采出程度数值模拟历史拟合结果

    Figure  10.   History matching of recovery percentage from water and gas alternating flooding and nitrogen foam flooding

    图  11   水驱与气水交替驱过程中含油饱和度变化特征对比

    Figure  11.   Comparison of oil saturation distribution change during water flooding and water and gas alternating flooding

    图  12   水驱与氮气泡沫驱过程中含油饱和度变化特征对比

    Figure  12.   Comparison of oil saturation distribution change during water flooding and nitrogen foam flooding

    表  1   不同注入方式X-1型岩心提高采出程度结果

    Table  1   Oil recovery percent from different injection methods of X-1 core

    岩心
    编号
    初始含油饱和度,
    %
    采出程度,% 注入方式
    前期水驱最终
    X-1-159.6545.7557.20气水交替驱
    X-1-259.4044.1662.42氮气泡沫驱
    下载: 导出CSV

    表  2   不同注入方式下X-2型岩心提高采出程度结果

    Table  2   Oil recovery percentage from different injection methods of X-2 core

    岩心
    编号
    初始含油饱和度,
    %
    采出程度,%注入方式
    前期水驱最终
    X-2-152.9128.6641.46气水交替驱
    X-2-253.2729.2574.33氮气泡沫驱
    下载: 导出CSV
  • [1] 陈全红,李文厚,郭艳琴,等. 鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J]. 地质学报,2006,80(5):656–663.

    CHEN Quanhong, LI Wenhou, GUO Yanqin, et al. Turbidite systems and the significance of petroleum exploration of Yanchang Formation in the Southern Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 656–663.

    [2] 王金铎,韩文功,于建国,等. 东营凹陷沙三段浊积岩体系及其油气勘探意义[J]. 石油学报,2003,24(6):24–29.

    WANG Jinduo, HAN Wengong, YU Jianguo, et al. Turbidity system in the third section of Shahejie Formation of Dongying Sag and its implications on petroleum prospecting[J]. Acta Petrolei Sinica, 2003, 24(6): 24–29.

    [3]

    WYNN R B, WEAVER P P E, MASSON D G, et al. Turbidite depositional architecture across three inter-connected deep-water basins on the Northwest African Margin[J]. Sedimentology, 2002, 49(4): 669–695. doi: 10.1046/j.1365-3091.2002.00471.x

    [4] 肖玲,田景春,魏钦廉,等. 鄂尔多斯盆地油坊庄油田长2油层组储层宏观非均质性研究[J]. 沉积与特提斯地质,2006,26(2):59–62.

    XIAO Ling, TIAN Jingchun, WEI Qinlian, et al. Inhomogeneity of the Chang-2 pay sets of the Youfangzhuang Oilfield in the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(2): 59–62.

    [5]

    QIU Zhongyan, HAN Xiqiu, WANG Yejian. Turbidite events recorded in deep-sea core IR-GC1 off Western Sumatra: evidence from grain-size distribution[J]. Acta Geologica Sinica(English Edition), 2017, 91(4): 1448–1456. doi: 10.1111/1755-6724.13372

    [6] 赵卫平. 井震联合属性分析技术在深水浊积岩储层预测中的应用[J]. 工程地球物理学报,2016,13(2):213–220. doi: 10.3969/j.issn.1672-7940.2016.02.014

    ZHAO Weiping. The application of well-seismic joint attribute analysis technique to the prediction of deep-water turbidite sand reservoir[J]. Chinese Journal of Engineering Geophysics, 2016, 13(2): 213–220. doi: 10.3969/j.issn.1672-7940.2016.02.014

    [7]

    HAUGHTON D W, BARKER S P, MCCAFFREY W D. ‘Linked’ debrites in sand-rich turbidite systems—origin and significance[J]. Sedimentology, 2003, 50(3): 459–482. doi: 10.1046/j.1365-3091.2003.00560.x

    [8]

    LI Zhaomin, ZHANG Chao, LI Songyan, et al. Experiment research of CO2 foam alternating CO2 displacement EOR technology in heterogeneous reservoir[J]. Journal of Petrochemical Universities, 2011, 24(6): 1–5.

    [9] 刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术,2019,47(4):75–82.

    LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical differential velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82.

    [10] 汤瑞佳,王贺谊,余华贵,等. 水气交替注入对CO2驱油效果的影响[J]. 断块油气田,2016,23(3):358–362.

    TANG Ruijia, WANG Heyi, YU Huagui, et al. Effect of water and gas alternate injection on CO2 flooding[J]. Fault-Block Oil & Gas Field, 2016, 23(3): 358–362.

    [11] 李二党,韩作为,高祥瑞,等. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术,2020,48(5):85–91.

    LI Erdang, HAN Zuowei, GAO Xiangrui, et al. Research on the microscopic pore producing characteristics of tight reservoirs displaced by different gas injection media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85–91.

    [12] 郝宏达,侯吉瑞,赵凤兰,等. 低渗透非均质油藏二氧化碳非混相驱窜逸控制实验[J]. 油气地质与采收率,2016,23(3):95–100. doi: 10.3969/j.issn.1009-9603.2016.03.017

    HAO Hongda, HOU Jirui, ZHAO Fenglan, et al. Experiments of gas channeling control during CO2 immiscible flooding in low permeability reservoirs with heterogeneity[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 95–100. doi: 10.3969/j.issn.1009-9603.2016.03.017

    [13]

    SUICMEZ V. S, PIRI M, BLUNT M J. Pore-scale simulation of water alternate gas injection[J]. Transport in Porous Media, 2007, 66(3): 259–286. doi: 10.1007/s11242-006-0017-9

    [14] 廖辉,孔超杰,邓猛,等. 氮气泡沫驱提高采收率机理及影响因素研究进展[J]. 当代化工,2019,48(1):122–126.

    LIAO Hui, KONG Chaojie, DENG Meng, et al. Research progress of influence factors and mechanism of nitrogen foam flooding[J]. Contemporary Chemical Industry, 2019, 48(1): 122–126.

    [15] 李文静,林吉生,徐国瑞,等. 绥中36-1油田氮气泡沫逐级调驱实验研究[J]. 科学技术与工程,2016,16(9):177–181. doi: 10.3969/j.issn.1671-1815.2016.09.030

    LI Wenjing, LIN Jisheng, XU Guorui, et al. A laboratory research on nitrogen foam flooding step by step in SZ36-1 Oilfield[J]. Science Technology and Engineering, 2016, 16(9): 177–181. doi: 10.3969/j.issn.1671-1815.2016.09.030

    [16] 屈鸣,侯吉瑞,闻宇晨,等. 缝洞型油藏裂缝中泡沫辅助气驱运移特征[J]. 石油科学通报,2019,4(3):300–309.

    QU Ming, HOU Jirui, WEN Yuchen, et al. Migration features of foam-assisted gas drive in fractures of fracture-vuggy reservoirs[J]. Petroleum Science Bulletin, 2019, 4(3): 300–309.

    [17] 屈鸣,侯吉瑞,马仕希,等. 缝洞型油藏溶洞储集体氮气泡沫驱注入参数及机理研究[J]. 石油科学通报,2018,3(1):57–66.

    QU Ming, HOU Jirui, MA Shixi, et al. Mechanism and parameters of nitrogen foam flooding in cave reservoir bodies of fractured-cavity reservoirs[J]. Petroleum Science Bulletin, 2018, 3(1): 57–66.

    [18] 阳晓燕. 非均质油藏水驱开发效果研究[J]. 特种油气藏,2019,26(2):152–156.

    YANG Xiaoyan. Waterflood development effect study of heterogeneous reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 152–156.

    [19] 姚传进,雷光伦,高雪梅,等. 非均质条件下孔喉尺度弹性微球深部调驱研究[J]. 油气地质与采收率,2012,19(5):61–64. doi: 10.3969/j.issn.1009-9603.2012.05.016

    YAO Chuanjin, LEI Guanglun, GAO Xuemei, et al. Study on indepth profile control and flooding of pore-scale elastic microspheres under heterogeneous condition[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(5): 61–64. doi: 10.3969/j.issn.1009-9603.2012.05.016

    [20] 张莉,岳湘安,王友启. 基于非均质大模型的特高含水油藏提高采收率方法研究[J]. 石油钻探技术,2018,46(5):83–89.

    ZHANG Li, YUE Xiang’an, WANG Youqi. Research on large scale heterogeneous model based EOR methods for ultra-high water cut reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83–89.

    [21] 刘泉海,罗福全,黄海龙,等. 边底水油藏化学驱提高采收率实验研究[J]. 特种油气藏,2017,24(6):143–147. doi: 10.3969/j.issn.1006-6535.2017.06.028

    LIU Quanhai, LUO Fuquan, HUANG Hailong, et al. Experimental study on enhanced oil recovery by chemical flooding in reservoir with edge and bottom water[J]. Special Oil & Gas Reservoirs, 2017, 24(6): 143–147. doi: 10.3969/j.issn.1006-6535.2017.06.028

    [22] 韦琦,侯吉瑞,郝宏达,等. 特低渗油藏CO2驱气窜规律研究[J]. 石油科学通报,2019,4(2):145–153.

    WEI Qi, HOU Jirui, HAO Hongda, et al. Laboratory study of CO2 channeling characteristics in ultra-low-permeability oil reservoirs[J]. Petroleum Science Bulletin, 2019, 4(2): 145–153.

    [23] 屈鸣,侯吉瑞,李军,等. 缝洞型油藏三维可视化模型底水驱油水界面特征研究[J]. 石油科学通报,2018,3(4):422–433.

    QU Ming, HOU Jirui, LI Jun, et al. Research into characteristics of the oil-water interface during bottom water flooding in a fractured-vuggy reservoir by a 3-D visual model[J]. Petroleum Science Bulletin, 2018, 3(4): 422–433.

    [24] 白玉杰,曹广胜,侯玉花,等. 超临界二氧化碳+水交替驱注入井极限关井时间计算[J]. 特种油气藏,2020,27(1):162–168.

    BAI Yujie, CAO Guangsheng, HOU Yuhua, et al. Limit shut-in period calculation of CO2 + water alternating injection well[J]. Special Oil & Gas Reserviors, 2020, 27(1): 162–168.

    [25] 周涌沂,汪勇,田同辉,等. 改善平面非均质油藏水驱效果方法研究[J]. 西南石油大学学报,2007,29(4):82–85.

    ZHOU Yongyi, WANG Yong, TIAN Tonghui, et al. Research on the method of improving water-flooding effect for the reservoirs with plane heterogeneity[J]. Journal of Southwest Petroleum University, 2007, 29(4): 82–85.

    [26] 张立娟,岳湘安,杨志国,等. 非均质高温油藏非混相水气交替实验研究[J]. 断块油气田,2015,22(6):776–780.

    ZHANG Lijuan, YUE Xiang,an, YANG Zhiguo, et al. Immiscible water-alternating-gas experiments in high-temperature heterogeneous reservoir[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 776–780.

    [27]

    SALEHI M M, SAFARZADEH M A, SAHRAEI E, et al. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process[J]. Journal of Petroleum Science and Engineering, 2014, 120: 86–93. doi: 10.1016/j.petrol.2014.05.017

    [28] 元福卿,李冉,李兆敏,等. 低张力泡沫驱提高采收率的三维物理模拟研究[J]. 油田化学,2015,32(1):72–77.

    YUAN Fuqing, LI Ran, LI Zhaomin, et al. Three-dimensional physical simulation research of enhanced oil recovery in low tension foam flooding[J]. Oilfield Chemistry, 2015, 32(1): 72–77.

    [29] 李松泉,程林松,李秀生,等. 特低渗透油藏非线性渗流模型[J]. 石油勘探与开发,2008,35(5):606–612.

    LI Songquan, CHENG Linsong, LI Xiusheng, et al. Nonlinear seepage flow of ultralow permeability reservoirs[J]. Petroleum Exploration and Development, 2008, 35(5): 606–612.

    [30] 董平川, 牛彦良, 李莉. 各向异性油藏渗流的有限元数值模拟[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2633-2633.

    DONG Pingchuan, NIU Yanliang, LI Li. Finite element numerical simulation of seepage in an anisotropic reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(supplement 1): 2633-2633.

    [31] 田敏,李楠,吴文瑞,等. 考虑启动压力梯度的油水两相渗流压力分布[J]. 复杂油气藏,2012,5(1):51–554. doi: 10.3969/j.issn.1674-4667.2012.01.014

    TIAN Min, LI Nan, WU Wenrui, et al. Pressure distribution of oil-water seepage considering start-up pressure gradient[J]. Complex Hydrocarbon Reservoirs, 2012, 5(1): 51–554. doi: 10.3969/j.issn.1674-4667.2012.01.014

    [32] 胡渤. 不同渗透率和孔喉条件下泡沫流体的特性及调驱机理[J]. 油气地质与采收率,2016,23(4):70–75. doi: 10.3969/j.issn.1009-9603.2016.04.011

    HU Bo. Property of foam fluid and its mechanism of profile control and displacement in the reservoirs with different permeabilities and pore-throats[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 70–75. doi: 10.3969/j.issn.1009-9603.2016.04.011

    [33] 张云宝,徐国瑞,邹剑,等. 三相泡沫体系堵水效果及影响因素实验研究[J]. 油气藏评价与开发,2019,9(2):44–49,82.

    ZHANG Yunbao, XU Guorui, ZOU Jian, et al. Experimental study on water plugging effect and influence factors of three phase foam system[J]. Reservoir Evaluation and Development, 2019, 9(2): 44–49,82.

  • 期刊类型引用(14)

    1. 朱雷,潘金林,陈雪莲,马锐,田隆梅,周浩栋. 套管和水泥环尺寸对CBL/VDL测井套管波的影响研究. 石油钻探技术. 2025(01): 136-143 . 本站查看
    2. 陈瑶,谭慧静,王胜,郑秀华,朱文茜,叶有. 地热井固井中硅酸盐水泥体系的技术现状及发展趋势. 钻探工程. 2025(03): 1-11 . 百度学术
    3. 肖红,钱祎鸣. 基于改进DenseNet的固井质量评价新方法. 计算机技术与发展. 2024(01): 193-199 . 百度学术
    4. 郑少军,谷怀蒙,刘天乐,陈宇,蒋国盛,王韧,代天,秦榜伟,徐浩,万涛. 基于紧密堆积理论的深水低密度三元固相水泥浆体系. 天然气工业. 2024(02): 122-131 . 百度学术
    5. 张常瑞,张景富,朱胡佳,谢帅,谢雨辰,王建成. 超低密度水泥浆固井质量改进方法研究. 中国矿业. 2024(05): 181-186 . 百度学术
    6. 肖红,钱祎鸣. 基于CNN-SVM和集成学习的固井质量评价方法. 吉林大学学报(理学版). 2024(04): 960-970 . 百度学术
    7. 尚磊. 超低密度水泥固井质量评价方法研究. 石化技术. 2024(08): 215-217 . 百度学术
    8. 朱雷,陈雪莲,张鑫磊,袁仕俊,王华伟,买振. 基于IBC和CBL/VDL测井的微间隙识别方法. 石油钻探技术. 2024(04): 135-142 . 本站查看
    9. 邹卓峰,张宝权,李辉,王建华,王海涛,管震. 基于图像识别技术的固井质量评价方法研究. 钻探工程. 2024(S1): 104-111 . 百度学术
    10. 张强. 文23储气库储层段钻井液及储层保护技术. 断块油气田. 2023(03): 517-522 . 百度学术
    11. 任强,刘宁泽,罗文丽,高飞,刘景丽,刘岩,杨豫杭,程小伟. 泡沫减重水泥浆体系及其微观孔隙分布. 钻井液与完井液. 2023(03): 376-383 . 百度学术
    12. 丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 . 本站查看
    13. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
    14. 黎红胜,温慧芸,文良凡,郑振国,陈玉平. 哥伦比亚VS-6、VS-8井固井问题分析及其对策. 石油工业技术监督. 2022(10): 63-68 . 百度学术

    其他类型引用(3)

图(12)  /  表(2)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  377
  • PDF下载量:  73
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2021-02-19
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-04-08

目录

/

返回文章
返回