直推式存储测井工艺在西北油田的应用

张钰

张钰. 直推式存储测井工艺在西北油田的应用[J]. 石油钻探技术, 2021, 49(1): 121-126. DOI: 10.11911/syztjs.2021018
引用本文: 张钰. 直推式存储测井工艺在西北油田的应用[J]. 石油钻探技术, 2021, 49(1): 121-126. DOI: 10.11911/syztjs.2021018
ZHANG Yu. Application of Direct-Push Storage Logging Technology in the Northwest Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 121-126. DOI: 10.11911/syztjs.2021018
Citation: ZHANG Yu. Application of Direct-Push Storage Logging Technology in the Northwest Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 121-126. DOI: 10.11911/syztjs.2021018

直推式存储测井工艺在西北油田的应用

详细信息
    作者简介:

    张钰(1981—),男,甘肃民勤人,2004年毕业于成都理工大学资源勘查工程专业,2015年获成都理工大学地质工程专业工程硕士学位,高级工程师,主要从事勘探项目运行管理工作。E-mail:zhangyu.xbsj@sinopec.com

  • 中图分类号: TEP631.8+1

Application of Direct-Push Storage Logging Technology in the Northwest Oilfield

  • 摘要: 西北油田碳酸盐岩油气藏钻遇放空漏失或溢流的情况较多,从施工安全角度考虑,无法进行常规电缆测井;因井深及硫化氢含量高,部分斜井或水平井中钻具与套管环空间隙过小,无法进行电缆钻具输送测井。为了解决西北油田复杂环境下取全测井资料困难的问题,引进了一种无电缆、免对接的直推式存储测井工艺。介绍了直推式存储测井系统组成和主要技术指标,分析了其工艺特点。顺北、塔河及部分外围区块应用结果表明:直推式存储测井工艺的安全性、可靠性更高,可缩短测井占用井口的时间,大幅提高完井效率;在井况复杂或存在井控风险的井中,能够保证井下仪器的使用安全和井口安全,取全测井资料,且目的层测井资料获取率大幅提高(如顺北区块目的层测井资料获取率从31.25%提高至90.91%)。研究表明,直推式存储测井工艺取得的测井资料真实、可靠,可以满足储层评价需求,值得推广应用。
    Abstract: Conventional wireline logging cannot be carried out safely in the Northwest Oilfield due to lost circulation or overflow which often occurs in carbonate reservoirs. Because of well depth and high hydrogen sulfide content, as well as the small space between casing and drilling string in some inclined or horizontal wells, it is impossible to carry out wireline logging. To solve the difficulties in acquiring full logging data in complex environments of Northwest Oilfield, a new direct-push storage logging technology free of cables and docking was introduced. Further, introductions of the components, main technical indexes of this logging system were made, and the its technological characteristics were analyzed. Practical applications in Shunbei, Tahe and some peripheral blocks confirmed its higher safety and reliability, and it could shorten the time of occupying wellhead for logging and greatly improve completion efficiency. Besides, this new technology allows one to acquire full logging data while ensuring the safe service of downhole instruments and wellhead safety under complex well conditions or in wells with risks in well control. The acquisition rate of logging data in the target layers was significantly improved, for example, that of the Shunbei area was improved from 31.25% to 90.91%. The research results showed that the direct-push storage logging technology could acquire accurate and reliable data, and could meet the needs of reservoir evaluation, making it worthy of popularization and application.
  • 图  1   直推式常规测井工具串示意

    Figure  1.   Tool string sketch of direct-push conventional logging

    图  2   直推式特殊测井工具串示意

    Figure  2.   Tool string sketch of direct-push special logging

    图  3   TH10443X井奥陶系部分井段测井资料

    Figure  3.   Logging data of some sections in Ordovician in the Well TH10443X

    图  4   玉中2井奥陶系蓬莱坝组综合解释成果

    Figure  4.   Comprehensive interpretation of the Ordovician Penglaiba Formation in the Well Yuzhong-2

    图  5   顺北55X井奥陶系鹰山组部分井段综合解释成果

    Figure  5.   Comprehensive interpretation of some well sections in the Ordovician Yingshan Formation in the Well Shunbei-55X

    表  1   直推式存储测井工艺与其他测井工艺的特点对比

    Table  1   Comparison of the characteristics of direct-push storage logging technology with other logging Technologies

    测井工艺影响因素抗拉压强度测井方式测井项目测井质量井控风险
     电缆钻具输
    送测井
     钻井液杂质、湿接头工具、电缆、电路稳定性抗拉≤77.0 kN
    抗压≤18.0 kN
    上测/
    下测
     常规+能谱+成像类、井径≤120.7 mm无法施工 需耗时抢装工具剪断电缆压井
     泵出式存储
    测井
     保护套悬挂、投球泵出、电路稳定性抗拉≤68.0 kN
    抗压≤18.0 kN
    上测 常规 泵出前后可随时循环压井
     直推式存储
    测井
     电路稳定性抗拉≤167.0 kN
    抗压≤49.9 kN
    上测/
    下测
     常规+能谱+偶极子 随时循环压井
    下载: 导出CSV

    表  2   井深8 000.00 m、测量井段500.00 m条件下不同测井工艺测井用时对比

    Table  2   Comparison of logging time at depth of 8,000.00 m and logging section of 500.00 m with different logging technologies

    测井工艺各阶段用时/h测井总用时/h
    仪器组装下钻起钻循环顶通投球释放对接及导向裸眼测井
    电缆钻具输送测井≥2≥26≥20≥40≥4≥4.0≥60
    泵出式存储测井≥4≥20≥20≥4≥1.50≥3.5≥53
    直推式存储测井≥2≥20≥20正常灌浆00≥4.0≥46
    下载: 导出CSV
  • [1] 刘宝增. 塔里木盆地顺北地区油气差异聚集主控因素分析:以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探,2020,25(3):83–95.

    LIU Baozeng. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei Area, Tarim Basin: taking Shunbei No. 1 and No. 5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3): 83–95.

    [2] 杨海军,陈永权,田军,等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探,2020,25(2):62–72.

    YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62–72.

    [3] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探,2016,21(3):38–51. doi: 10.3969/j.issn.1672-7703.2016.03.004

    QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38–51. doi: 10.3969/j.issn.1672-7703.2016.03.004

    [4] 陈强路,席斌斌,韩俊,等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素:来自流体包裹体的证据[J]. 中国石油勘探,2020,25(3):121–133. doi: 10.3969/j.issn.1672-7703.2020.03.011

    CHEN Qianglu, XI Binbin, HAN Jun, et al. Preservation and influence factors of ultra-deep oil reservoirs in Shuntuoguole Area, Tarim Basin: evidence from fluid inclusions[J]. China Petroleum Exploration, 2020, 25(3): 121–133. doi: 10.3969/j.issn.1672-7703.2020.03.011

    [5] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,2018,39(2):207–216. doi: 10.11743/ogg20180201

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201

    [6] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质,2017,38(5):831–839. doi: 10.11743/ogg20170501

    JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole Area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831–839. doi: 10.11743/ogg20170501

    [7] 张正玉. 泵出式测井系统在四川地区复杂井中的应用[J]. 测井技术,2012,36(4):426–430. doi: 10.3969/j.issn.1004-1338.2012.04.021

    ZHANG Zhengyu. Application of pump-out logging system to complex wells in Sichuan Oilfield[J]. Well Logging Technology, 2012, 36(4): 426–430. doi: 10.3969/j.issn.1004-1338.2012.04.021

    [8] 赵业卫. 存储式多参数生产测井技术[J]. 测井技术,2006,30(3):276–279. doi: 10.3969/j.issn.1004-1338.2006.03.028

    ZHAO Yewei. Memory multi-parameter production logging technique[J]. Well Logging Technology, 2006, 30(3): 276–279. doi: 10.3969/j.issn.1004-1338.2006.03.028

    [9] 曹博凡,刘湘政,张雄辉,等. 存储式测井仪器状态监测系统设计[J]. 测井技术,2018,42(3):347–351.

    CAO Bofan, LIU Xiangzheng, ZHANG Xionghui, et al. Design of logging tool condition monitoring system for storage logging technology[J]. Well Logging Technology, 2018, 42(3): 347–351.

    [10] 刘广华,段润梅. 无电缆存储式测井技术在水平井中的应用[J]. 化工管理,2017(22):120. doi: 10.3969/j.issn.1008-4800.2017.22.104

    LIU Guanghua, DUAN Runmei. Application of cableless storage logging technology in horizontal well[J]. Chemical Enterprise Management, 2017(22): 120. doi: 10.3969/j.issn.1008-4800.2017.22.104

    [11] 徐俊博,信毅,吴兴能,等. SL6000LWF钻杆输送无电缆测井在塔里木油田的应用[J]. 国外测井技术,2013(2):14–17.

    XU Junbo, XIN Yi, WU Xingneng, et al. SL6000LWF drilling pipe conveyance cableless logging application in Tarim Oilfield[J]. World Well Logging Technology, 2013(2): 14–17.

    [12] 罗荣,李双林,罗军. 超深侧钻水平井测井工艺在塔河油田的应用[J]. 测井技术,2012,36(3):300–303. doi: 10.3969/j.issn.1004-1338.2012.03.017

    LUO Rong, LI Shuanglin, LUO Jun. The appliacation of the ultra-deep sidetrack horizontal well logging technology in Tahe Oil-field[J]. Well Logging Technology, 2012, 36(3): 300–303. doi: 10.3969/j.issn.1004-1338.2012.03.017

    [13] 蒋建平,罗荣,崔光. 超深、超长水平井测井工艺技术研究与应用[J]. 中外能源,2013,18(11):40–45. doi: 10.3969/j.issn.1673-579X.2013.11.008

    JIANG Jianping, LUO Rong, CUI Guang. Research and application of the logging technology for super deep and super long horizontal well[J]. Sino-Global Energy, 2013, 18(11): 40–45. doi: 10.3969/j.issn.1673-579X.2013.11.008

    [14] 罗荣. 顺南地区复杂条件下测井工艺研究与应用[J]. 中外能源,2016,2(21):54–58.

    LUO Rong. Research and application of logging technology under complex conditions in Shunnan Area[J]. Sino-Global Energy, 2016, 2(21): 54–58.

  • 期刊类型引用(10)

    1. 胜亚楠. 基于井下参数测量的钻柱运动特征及异常状态分析方法. 石油地质与工程. 2024(02): 108-111+126 . 百度学术
    2. 肖立志,罗嗣慧,龙志豪. 井场核磁共振技术及其应用的发展历程与展望. 石油钻探技术. 2023(04): 140-148 . 本站查看
    3. 朱柏宇,陈恭洋,毛敏,程乐利,杨毅,袁胜斌. 录井基础实验平台建设与应用. 录井工程. 2022(01): 1-10 . 百度学术
    4. 韩忠勤. 浅议地质录井技术在煤层气地质勘探中的运用. 冶金管理. 2021(03): 87-88 . 百度学术
    5. 韩忠勤. 数字测井技术在煤田地质勘探中的应用分析. 当代化工研究. 2021(10): 87-88 . 百度学术
    6. 张吉亮. 浅谈煤层气勘探井录井技术方法. 地质装备. 2020(03): 31-32+21 . 百度学术
    7. 刘开绪,吴春梅,马骏驰,郝健,王冰茜. 综合录井仪电导率传感器现场检定装置设计. 仪表技术与传感器. 2020(06): 50-54 . 百度学术
    8. 杨志升. 石油地质与录井的相互影响与协调. 中国石油和化工标准与质量. 2019(06): 116-117 . 百度学术
    9. 王磊,万亚旗. 科威特市场录井装备及高端技术服务发展思考. 录井工程. 2019(04): 102-104+111+149-150 . 百度学术
    10. 张新华,佘明军,王舒,夏杰. 激光技术在录井工程中的应用进展及展望. 石油钻探技术. 2018(06): 111-117 . 本站查看

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  388
  • PDF下载量:  131
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-12-09
  • 网络出版日期:  2020-12-27
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回