New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies
-
摘要: “十三五”以来,中国石化针对深层特深层油气、致密气和非常规油气高效勘探开发中的关键技术难题,持续加大科技攻关力度,突破了一批制约油气勘探开发的技术瓶颈,研发了一批高端技术装备、井下工具仪器和作业流体,形成了优快钻井完井、高温高精度测控、精细录井和高效储层改造等技术系列,促进了顺北油气田、涪陵页岩气田的高效勘探与效益开发, 为老油田和致密气田增储稳产提供了强有力的技术保障。但是,目前中国石化石油工程技术装备在作业效率、技术指标、综合成本等方面与国外先进水平相比还存在较大差距,因此在“十四五”期间,必须大力实施创新驱动战略,大力提升自主创新能力,突破钻井完井、测录井及储层改造等专业的关键核心技术,尽快提升石油工程技术装备水平,为中国石化稳油增气降本提供技术支撑。Abstract: During the 13th Five-Year Plan period, Sinopec has been continuously stepping up its scientific and technological efforts in view of the key technical problems in the efficient exploration and development of deep and ultra-deep oil and gas, tight low permeability oil and gas, and unconventional oil and gas. A number of technical bottlenecks restricting oil and gas exploration and development have been broken through; a batch of high-end technical equipment, downhole tools, instruments and fluids have been developed; a series of technologies have been formed including optimal fast drilling and completion, measurement and control under high temperature condition with high precision, fine logging and efficient reservoir stimulation. All promoted the efficient exploration and beneficial development of Shunbei ultra-deep oil and gas field and Fuling shale gas field, providing a strong technical support for increasing storage and stabilizing production in old oil fields and tight low permeability oil and gas fields. However, gaps still remain between the petroleum engineering technologies of Sinopec and foreign advanced technologies in the aspects of operation efficiency, technical index and comprehensive cost, etc. Thus, to provide Sinopec technical supports for stabilizing oil production, improving gas production and reducing cost, we must vigorously implement the innovation-driven strategy; largely enhance the ability of independent innovation; make breakthroughs in drilling and completion, logging and reservoir stimulation and other professional key core technologies; and improve the level of petroleum engineering technology and equipment as soon as possible during the 14th Five-Year Plan period.
-
现代地质导向钻井过程中,需采用近钻头随钻边界探测技术动态测量近钻头井眼轨迹参数(井斜角、方位角和工具面角),根据随钻成像预估地层和井眼变化趋势,据此调整钻头方向,提高油层钻遇率。由于振动、旋转、磁干扰等因素的影响,导致测量的近钻头井眼轨迹参数出现很大误差,严重影响了随钻测量精度,出现钻穿油层等情况。
目前旋转导向动态测量技术都掌握在国外油田技术服务公司手中,不对外公开,因此,未见到国外有井眼轨迹参数动态测量技术的报道。国内杨全进等人[1]建立了一种旋转导向系统有色噪声的改进无迹卡尔曼滤波方法,该算法限制条件较多。高怡等人[2]提出了采用多源动态姿态组合测量方法测量导向钻具的动态姿态,但加速度计采集数据的存储周期较长,造成测量误差较大。Xue Qilong等人[3-4]提出了基于卡尔曼滤波状态空间模型的动态井眼轨迹测量方法,但其只适用于线性系统。徐宝昌等人[5]提出了基于无迹卡尔曼滤波的动态姿态测量方法,但没有解决振动及旋转对动态姿态测量的影响。为此,笔者提出了一种基于数据融合的近钻头井眼轨迹参数动态测量方法,该方法针对三轴加速度计、磁通门和速率陀螺的测量系统,建立了基于四元数井眼轨迹参数测量模型,推导出加速度计与井眼轨迹平滑预测的关系,运用3个捷联式无迹卡尔曼滤波器和磁干扰校正系对加速度计、磁通门进行消噪,校正,实时测量近钻头井眼轨迹参数,提高随钻近钻头探边能力,确定最佳储层位置。
1. 近钻头动态井眼轨迹测量模型
近钻头动态测量系统由三轴加速度计、三轴磁通门和角速率陀螺仪组成,针对该系统,基于四元数方法建立井眼轨迹非线性数学模型。如图1所示,根据地理坐标系O-NED和钻具坐标系O-xyz的对应关系,建立欧拉角转换矩阵,并转换为四元数,k时刻姿态转换矩阵T表示为:
{\boldsymbol{T}}\left( k \right){{ = }} \left[ \begin{array}{l} {q_{\text{0}}^{\text{2}} + q_{\text{1}}^{\text{2}} - q_{\text{2}}^{\text{2}} - q_{\text{3}}^{\text{2}}}\\ {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{2}}} + {q_{\text{0}}}{q_{\text{3}}}} \right)}\\ {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{3}}} - {q_{\text{0}}}{q_{\text{2}}}} \right)}\end{array} \begin{array}{l} {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{2}}} - {q_{\text{0}}}{q_{\text{3}}}} \right)}\\ {q_{\text{0}}^{\text{2}} - q_{\text{1}}^{\text{2}} + q_{\text{2}}^{\text{2}} - q_{\text{3}}^{\text{2}}}\\ {{\text{2}}\left( {{q_{\text{2}}}{q_{\text{3}}} + {q_{\text{1}}}{q_{\text{0}}}} \right)}\end{array} \begin{array}{l} {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{3}}} + {q_{\text{0}}}{q_{\text{2}}}} \right)} \\ {{\text{2}}\left( {{q_{\text{2}}}{q_{\text{3}}} - {q_{\text{0}}}{q_{\text{1}}}} \right)} \\ {q_{\text{0}}^{\text{2}} - q_{\text{1}}^{\text{2}} - q_{\text{2}}^{\text{2}} + q_{\text{3}}^{\text{2}}} \end{array} \right] (1) 式中:q0,q1,q2和 q3为四元数。
理论上由于x轴和y轴的加速度计、磁通门正交相隔90°,其信号为正弦或余弦曲线。由于钻头旋转、振动的干扰,近钻头x轴和y轴加速度计、磁通门的实测信号如图2所示。由图2可以看出,近钻头的旋转、振动对磁通门的影响相对于加速度计较小,所以采取磁通门读数校正加速度计读数。
\frac{{{B_x}(k + 1)}}{{{B_x}(k)}} = \frac{{{a_x}(k + 1)}}{{{a_x}(k)}} = \frac{{B\sin ({w_x}(k + 1))}}{{B\sin ({w_x}(k))}} = \frac{{g\sin ({w_x}(k + 1))}}{{g\sin ({w_x}(k + 1))}} (2) \frac{{B\sin ({w_y}(k + 1))}}{{B\sin ({w_y}(k))}} = \frac{{g\sin ({w_y}(k + 1))}}{{g\sin ({w_y}(k + 1))}} = \frac{{{B_y}(k + 1)}}{{{B_y}(k)}} = \frac{{{a_y}(k + 1)}}{{{a_y}(k)}} (3) \left[ \begin{gathered} {a_x}(k + 1) \hfill \\ {a_y}(k + 1) \hfill \end{gathered}\right] = \left[ \begin{gathered} \frac{{{B_x}(k + 1)}}{{{B_x}(k)}} \hfill \\ 0 \hfill \\ \end{gathered} \begin{gathered} 0 \hfill \\ \frac{{{B_y}(k + 1)}}{{{B_y}(k)}} \hfill \\ \end{gathered}\right] \left[ \begin{gathered} {a_x}(k) \hfill \\ {a_y}(k) \hfill \\ \end{gathered}\right] (4) 式中:g为重力加速度,m/s2;B为地磁场强度,μT;Bx
\left(k\right) ,By\left(k\right) 和Bz\left(k\right) 为k时刻三轴磁通门测量的磁场强度,μT;ax\left(k\right) ,ay\left(k\right) 和az\left(k\right) 为k时刻三轴加速度计测量结果,m/s2;wx\left(k\right) ,wy\left(k\right) 和wz\left(k\right) 为k时刻陀螺仪的角速度,rad/s。2. 数据融合近钻头井眼轨迹参数动态测量方法
基于数据融合算法的近钻头井眼轨迹参数动态测量方法的测量流程如图3所示,图中KF1和KF2为基于扩展卡尔曼滤波算法的滤波器,KF3为基于无迹卡尔曼滤波算法的滤波器。测量步骤:1)将加速度计、磁通门、转动角速度四元数带入KF1滤波器,进行扩展卡尔曼滤波,得出井斜角、方位角估计值;2)将加速度计四元数带入KF2滤波器,进行扩展卡尔曼滤波,得出测深增量Δhm;3)将测深增量Δhm、井斜角、方位角估计值带入KF3滤波器,进行无迹卡尔曼滤波,得出井斜角、方位角最终估计值;4)利用井斜角、方位角最终估计值计算磁性工具面角ωm与重力工具面角的差Δω;5)利用磁性工具面角和角差Δω求出重力工具面角ωg。
近钻头振动信号是一种幅值大、频率高、频带宽的噪声信号,可以近似等效为高斯白噪声。动态测量的动力学模型为典型的非线性模型。根据z轴陀螺仪测量的转速wz,运用转速补偿策略,对x轴和y轴加速度计测量结果进行转速补偿[5],减小钻具旋转对加速度计测量结果的影响。根据转速补偿结果以及噪声特性,采用扩展、无迹卡尔曼滤波滤除振动干扰信号。
2.1 估计近钻头井斜角、方位角的扩展卡尔曼滤波算法
基于四元数的KF1的状态方程和量测方程:
Q(k + 1) = ({\boldsymbol{I}}{\text{ + }}{t_{\text{s}}}{\boldsymbol{A}}(k))Q(k) + w(k) (5) Z(k + 1) = F(Q(k)) + v(k) (6) 式中:Q(k)为k时刻的状态值;I为单位矩阵;ts为采样周期;w(k)为k时刻系统高斯白噪声;v(k)为k时刻传感器观测噪声;A(k)为k时刻状态转移矩阵;F(x)为非线性函数;Z(k+1)为k+1时刻的观测值。
Z(k + 1) = \left[ \begin{gathered} {B_x} \hfill \\ {B_y} \hfill \\ {B_z} \hfill \\ {a_x} \hfill \\ {a_y} \hfill \\ {a_z} \hfill \\ \end{gathered} \right] = \left[ \begin{array}{l} T(k) \left[ \begin{array}{c} B\cos \theta \hfill \\ 0 \hfill \\ B\sin \theta \hfill \end{array} \right]\\ T(k) \left[\begin{gathered} 0 \hfill \\ 0 \hfill \\ g \hfill \\ \end{gathered} \right] \end{array}\right] + v(k) (7) \begin{split} & Q(k + 1) = \left(I + {t_{\text{s}}} \left[ \begin{array}{c} 0 \hfill \\ {w_x}(k) \hfill \\ {w_y}(k) \hfill \\ {w_z}(k) \hfill \\ \end{array} \begin{array}{c} - {w_x}(k) \hfill \\ 0 \hfill \\ - {w_z}(k) \hfill \\ {w_y}(k) \hfill \\ \end{array} \begin{array}{c} - {w_y}(k) \hfill \\ {w_z}(k) \hfill \\ 0 \hfill \\ - {w_x}(k) \hfill \\ \end{array} \begin{array}{c} - {w_z}(k) \hfill \\ - {w_y}(k) \hfill \\ {w_x}(k) \hfill \\ 0 \hfill \\ \end{array} \right] \right) \cdot \\ & \qquad\qquad Q(k) + w(k)\end{split} (8) 三轴加速度信号、三轴磁通门信号、角速率陀螺信号进行数据融合后,采用扩展卡尔曼滤波算法,得到最优姿态估计[6-7],动态解算出钻井工具的实时姿态参数,确保钻具姿态测量计算的精度,减少计算量,对四元数Q进行更新,求出KF1滤波后的井斜角αKF1、方位角ϕKF1、高边工具面角ωg,KF1和磁性工具面角ωm,KF1。
{\alpha _{{\text{KF}}1}}{\text{ = }}\arctan \frac{{2({q_0}{q_1} + {q_2}{q_3})}}{{1 - 2(q_1^2 + q_2^2)}} (9) {\phi _{{\text{KF}}1}}{\text{ = }}\arctan \frac{{2({q_0}{q_3} + {q_1}{q_2})}}{{1 - 2(q_0^2 + q_3^2)}} (10) {\omega _{{\text{g}},{\text{KF}}1}}{\text{ = }}\arctan \frac{{({q_0}{q_2} + {q_1}{q_3})}}{{({q_0}{q_1} - {q_2}{q_3})}} (11) {\omega _{{\text{m}},{\text{KF}}1}}{{ = }}\arctan \frac{{({q_1}{q_2} + {q_0}{q_3})\cos \theta + ({q_1}{q_2} + {q_0}{q_3})\sin \theta }}{{(q_0^2 - q_1^2 - q_2^2 + q_3^2)\cos \theta + ({q_1}{q_3} - {q_0}{q_2})\sin \theta }} (12) 式中:αKF1,ϕKF1,ωg,KF1和ωm,KF1分别为KF1滤波后的井斜角、方位角、重力工具面角和磁性工具面角,(°);θ为地层倾角,(°)。
2.2 估计近钻头测深增量的扩展卡尔曼滤波算法
根据式(7)计算出四元数中的az,运用扩展卡尔曼滤波器计算系统经过ts后测深增量Δhm。z轴加速度计主要受到重力加速度和振动的干扰,由于采样时间ts为毫秒级,在单位采样周期内,重力加速度和振动的干扰可以视为近似相同[8-10],可以忽略振动对加速度计测量结果的影响。k为当前采样点,z轴加速度增量Δaz:
\Delta {a_z} = {a_z}(k + 1) - g\cos ({\alpha _{{\text{KF1}}}}(k)) (13) \Delta {a_z} = \Delta h_{\text{m}}^{''} (14) 为了提高对测深增量的估计,对Δhm进行二阶泰勒展开:
\Delta {h_{\text{m}}}(k + 1) = \Delta {h_{\text{m}}}(k) + \Delta {h_{\text{m}}}{(k)^{'}}{t_{\text{s}}} + 0.5\Delta {h_{\text{m}}}{(k)^{''}}t_{\text{s}}^{\text{2}} (15) KF2的状态方程和量测方程为:
\left[ \begin{gathered} \Delta {h_{\text{m}}}(k + 1) \\ \Delta {h_{\text{m}}}{(k + 1)^{'}} \\ \Delta {h_{\text{m}}}{(k + 1)^{''}} \\ \end{gathered} \right] = \left[ \begin{gathered} 1 \;\; {t_{\rm{s}}} \;\; t_{\rm{s}}^2 \hfill \\ 0 \;\;1 \;\;0 \hfill \\ 0\;\; 0 \;\;1 \hfill \end{gathered}\right] \left[ \begin{gathered} \Delta {h_{\text{m}}}(k) \\ \Delta {h_{\text{m}}}{(k)^{'}} \\ \Delta {h_{\text{m}}}{(k)^{''}} \\ \end{gathered} \right] + w(k) (16) \Delta {a_z} = \left[0 \; 0 \; 1\right] \left[ \begin{gathered} \Delta {h_{\text{m}}}(k + 1) \hfill \\ \Delta {h_{\text{m}}}{(k + 1)^{'}} \hfill \\ \Delta {h_{\text{m}}}{(k + 1)^{''}} \hfill \\ \end{gathered} \right] + v(k) (17) 2.3 估计近钻头井眼轨迹参数的无迹卡尔曼滤波算法
如图4所示,在单位采样时间内,井眼轨迹趋于平滑曲线,可以根据前面2个测点的狗腿度和KF2输出测深增量对井眼轨迹进行递归式预测[11]。
{h_{\text{m}}}(k + 1) = {h_{\text{m}}}(k) + \Delta {h_{\text{m}}}(k + 1) (18) \begin{split} & \;\;\;\;\;\;\; \gamma = \arccos \left[ {\cos \alpha (k)\cos \alpha (k - 1) + }\right. \\ & \left.{ \sin \alpha (k)\sin \alpha (k - 1)\cos (\phi (k) - \phi (k - 1))} \right] \end{split} (19) \Delta \gamma (k + 1) = \frac{{\gamma \Delta {h_{\text{m}}}(k + 1)}}{{\Delta {h_{\text{m}}}(k)}} (20) 式中:γ为狗腿角,(°);Δγ为系统经过ts的狗腿角增量,(°);
{h_{\text{m}}}(k) 为k时刻的测深,m。根据
\Delta {h_{\text{m}}}(k) 进行无迹卡尔曼滤波,KF3的状态方程和量测方程为:\begin{array}{l} \quad \alpha (k + 1) = \arccos [\cos (\gamma + \Delta \gamma (k + 1))\cos \alpha (k - 1) +\\ \dfrac{{\sin (\gamma + \Delta \gamma (k + 1))}}{{\sin \gamma }}(\cos \alpha (k - 1)\cos \gamma - \cos \alpha (k))] + {w_{\alpha (k)}} \end{array} (21) \begin{array}{l} \qquad\; \phi (k+1)=\phi (k)+\mathrm{sgn}(\phi (k)-\phi (k-1) \cdot \\ {\rm{arccos}}\dfrac{\mathrm{cos}(\Delta \gamma (k+1)-\mathrm{cos}\alpha (k)\mathrm{cos}\alpha (k{-1})}{\mathrm{sin}\alpha (k)\mathrm{sin}\alpha (k{-1})}+{w}_{\phi (k)} \end{array} (22) 式中:wα和wϕ分别为井斜角和方位角的系统高斯白噪声。
{\alpha _{{\text{KF3}}}} = \alpha {\text{(}}k + 1) + \nu {}_{\alpha (k)} (23) {\phi _{{\text{KF3}}}} = \phi {\text{(}}k + 1) + {\nu _{\phi (k)}} (24) 式中:αKF3和ϕKF3分别为KF3滤波后的井斜角和方位角,(°);vα和vϕ分别为井斜角和方位角的系统观测噪声。
2.4 近钻头重力工具面角的估计
根据旋转测量原理,同一时刻的重力工具面角与磁工具面角的差与测量时刻的井斜角、方位角、地磁倾角呈现一定函数关系[12-13]。根据KF3求出的井眼井斜角和方位角计算磁性工具面角与重力工具面角的差Δω:
\Delta \omega = - 90 + \arctan \frac{{\sin {\phi _{{\text{KF}}3}}}}{{\cos {\alpha _{{\text{KF}}3}}\cos {\phi _{{\text{KF}}3}} - \tan \theta \sin {\alpha _{{\text{KF}}3}}}} (25) 根据Δω,计算旋近钻头动态重力工具面角估计值ωdg,e:
{\omega _{{\text{dg,e}}}} = {\omega _{{\text{m,KF3}}}} + \Delta \omega (26) 式中:ωdg,e为旋近钻头动态重力工具面角估计值,(°);ωm,KF3为KF3滤波后的磁性工具面角,(°)。
2.5 磁干扰情况下的磁性工具面角
近钻头重力工具面角需根据x轴和z轴磁通门传感器的读数求出[14-15],而磁通门测量结果不可避免地会受到周围电磁场的影响,为了降低井下钻具周围电磁场的影响程度,采用径向磁干扰的方法校正x轴和z轴磁通门的测量结果[16]。
磁场的干扰导致磁通门测量的磁场强度发生偏移和变形。磁干扰下的测量结果如图5所示。
在实际钻井过程中,井下仪器旋转一圈时,钻深可以忽略不计,可以看作仪器在原地旋转了一圈。z轴磁通门的测量结果可以认为没有发生变化,而x轴和y轴磁通门的测量值不断发生变化,如图2(a)所示。三轴磁通门传感器的测量数据记为(Bx,By,Bx),地球磁场可以看成一个固定值,即:
B_x^2 + B_y^2 + B_z^2 = {C^2} (27) 式中 :C为常数。
根据椭圆校正原理,对短时间内采集的Bx,By进行磁干扰校正,得出排除磁干扰的Bxm和Bym:
{a_{x{\text{f}}}} = \max \left(1,\frac{{{B_{y\max }} - {B_{y\min }}}}{{{B_{x\max }} - {B_{x\min }}}}\right) (28) b{}_{x{\text{f}}} = \frac{{{B_{x\max }} - {B_{x\min }}}}{2} - {a_{x{\text{f}}}}{B_{x\max }} (29) B{}_{x{\text{m}}} = {B_x}{a_{x{\text{f}}}} + {b_{x{\text{f}}}} (30) {a_{y{\text{f}}}} = \max \left(1,\frac{{{B_{x\max }} - {B_{x\min }}}}{{{B_{y\max }} - {B_{y\min }}}}\right) (31) b{}_{y\text{f}}={a}_{y\text{f}} \left(\frac{{B}_{y\mathrm{max}}-{B}_{y\mathrm{min}}}{2}-{B}_{y\mathrm{max}}\right) (32) B{}_{y{\text{m}}} = {B_y}{a_{y{\text{f}}}} + {b_{y{\text{f}}}} (33) 式中:axf和ayf为x轴磁通门测量磁场强度的校正系数;bxf和byf为 y轴磁通门测量磁场强度的校正值,μT;Bxm和Bym为x轴和y轴排除磁干扰后的磁场强度,μT。
3. 试验与分析
在实验室对NWD施加20~50 r/min转速、 1g~3g振幅的高斯白噪声振动信号,模拟井下钻进过程。采用上述测量方法测量井斜角和方位角,并与实际井斜角和方位角进行对比,结果见图6。由图6可以看出:测量井斜角与实际井斜角的最大误差为1.30°,最小误差为0.02°,平均误差为0.12°,方差为1.26°;测量方位角与实际方位角的最大误差为1.95°,最小误差为0.15°,平均误差为0.57°,方差为2.46°。
图7为采用上文测量方法(以下称为动态测量方法)测量工具面角、NWD探管直接测量工具面角与实际工具面角的差值。由图7可以看出,NWD探管直接测得工具面角与实际工具面角的差最大接近40°,已经不能满足测量近钻头伽马重力工具面角的要求,而采用动态测量方法测得的工具面角与实际工具面角的差小于10°,满足测量近钻头工具面角的要求。
在井斜角为0.5°、方位角度为142.818°,地磁场强度为53.74 μT、磁倾角为55.8°、磁性工具面角30°的测点,对NWD探管x、y方向分别施加0.1和0.2 μT的磁干扰,未进行磁干扰校正前测得磁性工具面角为23.56°,经过磁干扰校正后,磁性工具面角为29.82°,与真实工具面角相差0.18°。
为了验证动态测量方法的可行性和有效性,在某井3 800.00~4 100.00 m井段进行验证,首先在钻进过程利用动态测量方法测量井斜角、方位角和工具面角,然后再停钻测量井斜角、方位角和工具面角(下文称之为静态测量),然后对比静态和动态测量结果。因为钻具停止时没有旋转、振动和磁干扰,因此以静态测量结果为真实值。
图8为动态测得井斜角与静态测得井斜角的对比。由图8可以看出,动态测得井斜角与静态测得井斜角的平均误差为0.19°,方差为0.9342°。图9为动态测得方位角与静态测得方位角的对比。由图9可以看出,动态测得方位角与静态测得方位角的平均误差为1.19°,方差为1.943 642°。
图10为动态测量工具面角与静态测量工具面角的对比。由图10可以看出,动态测得工具面角与静态测得工具面角的误差小于5°。
以上分析可以得出,基于数据融合的井眼轨迹参数测量方法能够有效消除旋转、振动、磁干扰的影响,井斜角、方位角和工具面角的测量精度得到明显提高,满足了随钻地质导向对井眼轨迹参数测量的要求。
4. 结 论
1)针对旋转、振动、磁干扰对近钻头测量仪器的影响,提出了基于数据融合的井眼轨迹参数动态测量方法。该方法采用捷联式卡尔曼滤波器和磁干扰校正系统对测量信号进行滤波、校正,利用四元数法处理测量数据,求出近钻头井眼轨迹参数。
2)实验室模拟试验和现场试验均表明,基于数据融合的井眼轨迹参数动态测量方法可以消除旋转、振动、磁干扰的影响,使测得井眼轨迹参数的精度明显提高,满足了随钻地质导向对井眼轨迹参数测量的要求。
3)建议在现在研究成果基础上,进一步优化数据融合算法,比如基于机器学习的井眼轨迹预测模型,基于遗传算法的卡尔曼滤波器的参数调优。
-
[1] 马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9. MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
[2] 王敏生,光新军,皮光林,等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术,2018,46(6):1–8. WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.
[3] 路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术,2019,47(1):1–7. doi: 10.11911/syztjs.2019027 LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027
[4] 曾涛,张弼驰,吴雪,等. 斯伦贝谢近10年科技创新经验与启示[J]. 国际石油经济,2019,27(9):25–32. doi: 10.3969/j.issn.1004-7298.2019.09.004 ZENG Tao, ZHANG Bichi, WU Xue, et al. Experiences and implications from Schlumberger’s scientific and technological innovation over ten years[J]. International Petroleum Economics, 2019, 27(9): 25–32. doi: 10.3969/j.issn.1004-7298.2019.09.004
[5] 吕建中,杨虹,孙乃达. 全球能源转型背景下的油气行业技术创新管理新动向[J]. 石油科技论坛,2019,38(4):1–8. LYU Jianzhong, YANG Hong, SUN Naida. New orientation of oil and gas industrial technology innovation management against background of global energy transformation[J]. Oil Forum, 2019, 38(4): 1–8.
[6] 袁磊,杨虹,何艳青. 国内外大型先进企业开放式创新的动因与模式[J]. 石油科技论坛,2015,34(4):25–30. doi: 10.3969/j.issn.1002-302x.2015.04.005 YUAN Lei, YANG Hong, HE Yanqing. Motivations and models of open innovation at Chinese and overseas large-scale excellent enterprises[J]. Oil Forum, 2015, 34(4): 25–30. doi: 10.3969/j.issn.1002-302x.2015.04.005
[7] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069 DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
[8] 张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术,2019,47(3):9–17. doi: 10.11911/syztjs.2019061 ZHANG Jinhong. Current status and outlook for the development of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9–17. doi: 10.11911/syztjs.2019061
[9] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
[10] 路保平,鲍洪志,余夫. 基于流体声速的碳酸盐岩地层孔隙压力求取方法[J]. 石油钻探技术,2017,45(3):1–7. LU Baoping, BAO Hongzhi, YU Fu. A pore pressure calculating method for carbonate formations based on fluid velocity[J]. Petroleum Drilling Techniques, 2017, 45(3): 1–7.
[11] 王兴隆,程远方,赵益忠. 钻井作业中泥页岩地层井壁稳定受温度影响的规律研究[J]. 石油钻探技术,2007,35(2):42–45. doi: 10.3969/j.issn.1001-0890.2007.02.013 WANG Xinglong, CHENG Yuanfang, ZHAO Yizhong. The effect of temperature on wellbore stability in shales during drilling[J]. Petroleum Drilling Techniques, 2007, 35(2): 42–45. doi: 10.3969/j.issn.1001-0890.2007.02.013
[12] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542. SU Yi’nao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
[13] 路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234. LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.
[14] 柴龙,林永学,金军斌,等. 塔河油田外围高温高压井气滞塞防气窜技术[J]. 石油钻探技术,2018,46(5):40–45. CHAI Long, LIN Yongxue, JIN Junbin, et al. Anti-gas channeling technology with gas-block plug for high temperature and high pressure wells in the periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40–45.
[15] 罗发强,韩子轩,柴龙,等. 抗高温气滞塞技术的研究与应用[J]. 钻井液与完井液,2019,36(2):165–169. LUO Faqiang, HAN Zixuan, CHAI Long, et al. Study and application of high temperature gas blocking plug[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 165–169.
[16] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术,2017,45(6):8–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
[17] 韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺,2019,41(5):555–561. HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing Area[J]. Oil Drilling & Production Technology, 2019, 41(5): 555–561.
[18] 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术,2019,47(3):25–33. doi: 10.11911/syztjs.2019062 ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062
[19] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术,2019,47(6):9–14. doi: 10.11911/syztjs.2019118 LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
[20] 马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步[J]. 石油钻探技术,2019,47(3):34–40. doi: 10.11911/syztjs.2019055 MA Kaihua, GU Lei, YE Haichao. The demands on deep oil/gas exploration & development and the technical advancement of liner hangers[J]. Petroleum Drilling Techniques, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055
[21] 赵旭,姚志良,胡兴军,等. 一种新型自适应调流控水装置的设计及机理研究[J]. 机床与液压,2019,47(6):69–75. ZHAO Xu, YAO Zhiliang, HU Xingjun, et al. Design and principle analysis of a new type of adaptive inflow control device[J]. Machine Tool & Hydraulics, 2019, 47(6): 69–75.
[22] 赵旭,龙武,姚志良,等. 水平井砾石充填调流控水筛管完井技术[J]. 石油钻探技术,2017,45(4):65–70. ZHAO Xu, LONG Wu, YAO Zhiliang, et al. Completion techniques involving gravel-packing inflow-control screens in horizontal wells[J]. Petroleum Drilling Techniques, 2017, 45(4): 65–70.
[23] 赵旭. 自适应调流控水技术研究与试验[J]. 石油机械,2019,47(7):93–98. ZHAO Xu. Automatic inflow control technology for water con-trol[J]. China Petroleum Machinery, 2019, 47(7): 93–98.
[24] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95–102. doi: 10.11911/syztjs.2019054 WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102. doi: 10.11911/syztjs.2019054
[25] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术,2014,42(4):7–13. LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.
[26] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120. doi: 10.11911/syztjs.2019068 LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
[27] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022 LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
[28] 赵锐,赵腾,李慧莉,等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏,2019,26(5):8–13. ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special oil & Gas Reservoirs, 2019, 26(5): 8–13.
[29] 丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术,2019,47(3):41–49. DING Shidong, TAO Qian, MA Lanrong. Progress, outlook, and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques, 2019, 47(3): 41–49.
[30] 侯亮,杨虹,刘知鑫. 2019测井技术发展动向与展望[J]. 世界石油工业,2019,26(6):58–63. HOU Liang, YANG Hong, LIU Zhixin. Development and prospect of well logging technologies in 2019[J]. World Petroleum Industry, 2019, 26(6): 58–63.
[31] 张桂清. 随钻测井发展历程及四大服务公司的随钻测井技术[R]. 北京: 中国石油集团经济技术研究院, 2011. ZHANG Guiqing. The development of logging while drilling technology and the technology in the four major service companies[R]. Beijing: CNPC Economic & Technology Research Institute, 2011.
[32] 许玛丽. 国内外随钻测量技术现状与展望[J]. 化工管理,2019(17):109–110. doi: 10.3969/j.issn.1008-4800.2019.17.069 XU Mali. resent situation and prospect of MWD technology at home and abroad[J]. Chemical Enterprise Management, 2019(17): 109–110. doi: 10.3969/j.issn.1008-4800.2019.17.069
[33] 杨虹. 四大测井服务公司的技术管理模式[J]. 测井技术,2010,34(6):511–516. doi: 10.3969/j.issn.1004-1338.2010.06.001 YANG Hong. The R & D strategies and management of the major logging service companies[J]. Well Logging Technology, 2010, 34(6): 511–516. doi: 10.3969/j.issn.1004-1338.2010.06.001
[34] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155.
[35] 王丽忱,朱桂清,甄鉴. 随钻测井数据传输技术新进展[J]. 石油科技论坛,2014,33(6):42–45. WANG Lichen, ZHU Guiqing, ZHEN Jian. New progress in LWD data transmission technology[J]. Oil Forum, 2014, 33(6): 42–45.
[36] 周小慧,宋桂桥,张卫华,等. 随钻地震技术及其新进展[J]. 石油物探,2016,55(6):913–923. doi: 10.3969/j.issn.1000-1441.2016.06.017 ZHOU Xiaohui, SONG Guiqiao, ZHANG Weihua, et al. Current research progress of seismic while drilling technology[J]. Geophysical Prospecting for Petroleum, 2016, 55(6): 913–923. doi: 10.3969/j.issn.1000-1441.2016.06.017
[37] 李新,肖立志,刘化冰. 随钻核磁共振测井的特殊问题与应用实例[J]. 测井技术,2011,35(3):200–205. LI Xin, XIAO Lizhi, LIU Huabing. Key issues and application cases of NMR logging while drilling[J]. Well Logging Technology, 2011, 35(3): 200–205.
[38] 廖东良,路保平,陈延军. 页岩气地质甜点评价方法:以四川盆地焦石坝页岩气田为例[J]. 石油学报,2019,40(2):144–151. LIAO Dongliang, LU Baoping, CHEN Yanjun. An evaluation method of geological sweet spots of shale gas reservoir: a case study of the Jiaoshiba Gas Field, Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 144–151.
[39] 陈晓静. 国内外MWD仪器的发展和应用[J]. 中国石油和化工标准与质量,2018,38(14):92–93. doi: 10.3969/j.issn.1673-4076.2018.14.046 CHEN Xiaojing. Development and application of MWD instrument at home and abroad[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(14): 92–93. doi: 10.3969/j.issn.1673-4076.2018.14.046
[40] 刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767–1775. doi: 10.6038/cjg20150526 LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775. doi: 10.6038/cjg20150526
[41] 倪卫宁,张晓彬,万勇,等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术,2017,45(2):115–120. NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115–120.
[42] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058 JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
[43] 陈作,曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术,2016,44(1):6–11. CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6–11.
[44] 冯国强,赵立强,卞晓冰,等. 深层页岩气水平井多尺度裂缝压裂技术[J]. 石油钻探技术,2017,45(6):77–82. FENG Guoqiang, ZHAO Liqiang, BIAN Xiaobing, et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays[J]. Petroleum Drilling Techniques, 2017, 45(6): 77–82.
[45] 王海涛,蒋廷学,卞晓冰,等. 深层页岩压裂工艺优化与现场试验[J]. 石油钻探技术,2016,44(2):76–81. WANG Haitao, JIANG Tingxue, BIAN Xiaobing, et al. Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76–81.
[46] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111. LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.
[47] 陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82–87. CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82–87.
[48] 陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8. CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8.
[49] 任红,裴学良,吴仲华,等. 天然气水合物保温保压取心工具研制及现场试验[J]. 石油钻探技术,2018,46(3):44–48. REN Hong, PEI Xueliang, WU Zhonghua, et al. Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J]. Petroleum Drilling Techniques, 2018, 46(3): 44–48.
[50] 赵金洲. 文23地下储气库关键工程技术[J]. 石油钻探技术,2019,47(3):18–24. ZHAO Jinzhou. The key engineering techniques of the Wen 23 underground gas storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 18–24.
[51] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
[52] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,43(4):505–512. doi: 10.7623/syxb202004013 WANG Minsheng, GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica, 2020, 43(4): 505–512. doi: 10.7623/syxb202004013
[53] 闫铁,徐瑞,刘维凯,等. 中国智能化钻井技术研究发展[J]. 东北石油大学学报,2020,44(4):15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003 YAN Tie, XU Rui, LIU Weikai, et al. Research and development of intelligent drilling technology in China[J]. Journal of Northeast Petroleum University, 2020, 44(4): 15–21. doi: 10.3969/j.issn.2095-4107.2020.04.003
[54] 张立立,高迅. 7000米钻机自动化升级改造系统的研制及应用[J]. 石化技术,2019,26(12):232–236. doi: 10.3969/j.issn.1006-0235.2019.12.142 ZHANG Lili, GAO Xun. Development and application of automatic upgrading system for 7000m drilling rig[J]. Petrochemical Industry Technology, 2019, 26(12): 232–236. doi: 10.3969/j.issn.1006-0235.2019.12.142
-
期刊类型引用(8)
1. 张亚洲. 回接筒顶部修复工具的研制与应用. 钻采工艺. 2023(01): 110-114 . 百度学术
2. 王德坤,邓艾,周倩,刘运楼. 双鱼X井短回接插挂一体化固井技术实践. 天然气技术与经济. 2023(06): 16-20+87 . 百度学术
3. 杨玉豪,张万栋,韩成,张超,徐一龙,刘贤玉. 南海高温高压气田尾管回接管柱改进及入井质量控制. 断块油气田. 2020(02): 253-257 . 百度学术
4. 孙泽秋,魏钊,代红涛,覃毅,陈涛. 新型封隔式回接装置及工艺技术研究. 石油工业技术监督. 2018(07): 52-55 . 百度学术
5. 孙泽秋,代红涛,魏钊,丁玲玲,覃毅. 基于新型封隔式回接装置的尾管回接关键技术. 天然气与石油. 2018(02): 68-72 . 百度学术
6. 李鹏飞,邹传元,刘洪彬. 顺南区块系列特制固井工具的研制与应用. 钻采工艺. 2018(02): 26-29 . 百度学术
7. 王秀影,胡书宝,秦义,张彬,游子卫,黄海鸿. 雁翎潜山注气重力驱钻完井难点与对策. 断块油气田. 2017(04): 592-595 . 百度学术
8. 吴江,朱新华,李炎军,杨仲涵. 莺歌海盆地东方13-1气田高温高压尾管固井技术. 石油钻探技术. 2016(04): 17-21 . 本站查看
其他类型引用(0)