Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering
-
摘要: 大数据技术逐渐成为石油公司与油服公司实现石油工程智能化和降本增效的重要手段之一,目前已成为国内外研究的热点。为了促进大数据技术在油气行业的快速发展和广泛应用,加快石油工程的数字化智能化转型,阐述了大数据技术的定义和特点,从大数据平台和钻井、压裂及开发等具体应用场景2个方面分析了大数据技术在石油工程中的应用现状,指出大数据技术在石油工程中的发展需要建立统一的大数据分析平台,与数字化巨头合作研发,完善石油工程大数据管理机制和技术标准,强化基础、前瞻技术研究,并针对具体应用场景部署实施相关项目,逐步建立石油工程大数据生态系统。大数据技术在石油工程行业具有广阔的应用前景,加快石油工程大数据技术的研究和应用,对于促进我国油气资源的经济高效开发具有重要作用。Abstract: Big data technology, gradually becoming one of the most important methods for oil companies and oilfield service companies to realize petroleum engineering intelligence, cost reduction and efficiency improvement, has become a research hotspot at home and abroad. The paper introduces the definition and characteristics of big data technology to promote its rapid development and widespread application in the oil and gas industry and accelerate the digital and intelligent transformation of petroleum engineering. In this study, the current application of big data in petroleum engineering is analyzed from two aspects: big data platforms and specific application scenarios including drilling, fracturing and developing. Based on the analysis, it is proposed that an unified big data platform should be established with the cooperation of digital giants to modify the data management mechanism and technical standards. Besides, basic and prospective research should be strengthened, and research projects should be implemented for specific application scenarios, establishing an ecosystem of big data for petroleum engineering. The application of big data technology in petroleum engineering is promising, and it is of great significance to accelerate the investigation and application of big data in petroleum engineering for promoting the economic and efficient development of oil and gas .
-
Keywords:
- big data /
- petroleum engineering /
- application status /
- development suggestion
-
-
[1] MCKINSEY J, CHUI M, BROWN B, et al. Big data: the next frontier for innovation, competition, and productivity[EB/OL]. [2020-03-20]. https//www.mckinsey.com/business-functions/digital mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
[2] ISHWARAPPA, ANURADHA J. A brief introduction on big data 5Vs characteristics and hadoop technology[J]. Procedia Computer Science, 2015, 48: 319–324.
[3] ZBOROWSKI M. How Conocophillips solved its big data problem[J]. Journal of Petroleum Technology, 2018, 70(7): 16–26.
[4] AL-SUBAIEI D, AL-HAMER M, AL-ZAIDAN A, et al. Smart production surveillance: production monitoring and optimization using integrated digital oil field[R]. SPE 198114, 2019.
[5] 刘伟,闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛,2018,37(4):32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006 LIU Wei, YAN Na. Application and influence of artificial intelligence in petroleum engineering area[J]. Oil Forum, 2018, 37(4): 32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006
[6] DELFI cognitive E&P environment[EB/OL]. [2020-03-20]. https://www.software.slb.com/delfi.
[7] GE’s predix[EB/OL]. [2020-03-20]. https://www.bhge.com/digital/ges-predix.
[8] Halliburton Landmark introduces DecisionSpace® 365 cloud applications at annual innovation forum[EB/OL]. [2020-03-20]. https://www.halliburton.com/en-US/news/announcements/2019/halliburton-landmark-introduces-decisionSpace-365-cloud-applications.html?node-id=hgeyxtfs.
[9] AKW Analytics Inc. and PALM- Petroleum Analytics Learning MachineTM[DB/OL]. [2020-03-20]. https://www.researchgate.net/publication/335276595_AKW_Analytics_Inc.
[10] 新华网. 中石油发布勘探开发梦想云平台[EB/OL]. [2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm. Xinhuanet. PetroChina published the dream cloud platform for exploration and exploitation[EB/OL].[2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.
[11] BUSBY D, PIVOT F, TADJER A. Use of data analytics to improve well placement optimization under uncertainty[R]. SPE 188265, 2017.
[12] LASHARi S E, TAKBIRI-BORUJENI A, FATHI E, et al. Drilling performance monitoring and optimization: a data-driven approach [J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 2747–2756.
[13] 侯凯.基于大数据的钻头选型方法研究[D].成都: 西南石油大学, 2018. HOU Kai. Investigation of bit selection method based on the big data[D]. Chengdu: Southwest Petroleum University, 2018.
[14] NOSHI C, SCUBERT J J. Application of data science and machine learning algorithms for ROP optimization in West Texas: turing data into knowledge[R]. OTC 29288, 2019.
[15] 左迪一.基于大数据分析的克深区块钻井综合提速研究[D].北京: 中国石油大学(北京), 2018. ZUO Diyi. Research on ROP increasing in Keshen Block based on big data analysis[D]. Beijing: China University of Petroleum (Beijing), 2018.
[16] 刘胜娃, 孙俊明, 高翔, 等.基于人工神经网络的钻井机械钻速预测模型的分析与建立[J].计算机科学, 2019, 46(增刊1): 605–608. LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(supplement 1): 605–608.
[17] GUPTA I, TRAN N, DEVEGOWDA D, et al. Looking ahead of the bit using surface drilling and petrophysical data: machine-learning-based real time geosteering in volve field[R]. SPE 199882, 2020.
[18] 李维校.基于石油钻井大数据技术的钻进优化控制的研究[D].西安: 西安石油大学, 2018. LI Weixiao. Research on drilling optimization control based on petroleum drilling big data technology[D]. Xi’an: Xi’an Shiyou University, 2018.
[19] JOHNSTON J, GUICHARD A. New findings in drilling and wells using big data analytics[R]. OTC 26021, 2015.
[20] RAED A, MOHAMMAD A, SALEM G, et al. Drilling through data: automated kicked detection using data mining[R]. SPE 193687, 2018.
[21] PANKAJ P, GEETAN S, MACDONALD R, et al. Need for speed: data analytics coupled to reservoir characterization fast tracks well completion optimization[R]. SPE 189790, 2018.
[22] LIANG Yu, LIAO Lulu, GUO Ye. A big data study: correlations between EUR and petrophysics/engineering/production parameters in shale formations by data regression and interpolation analysis[R]. SPE 194381, 2019.
[23] WILSON A. Technique blends dimensionless numbers and data mining to predict recovery factors[J]. Journal of Petroleum Technology, 2017, 69(10): 88–90.
[24] ROLLINS B T, BROUSSARD A, CUMMINS B, et al. Continental production allocation and analysis through big data[R]. URTEC 2678296, 2017.
-
期刊类型引用(11)
1. 肖尧,闫振峰,李剑华. 纳米基低密高强水泥浆在赵东油田的应用. 石油地质与工程. 2023(04): 117-120+126 . 百度学术
2. 杨威,刘仕康,薛雷. 渤海浅层大位移井固井水泥浆技术. 石油化工应用. 2023(12): 37-41 . 百度学术
3. 秦江,宋凯,文华,胡顺,彭石峰. 纳米低密度水泥浆体系在页岩油水平井固井中的应用. 长江大学学报(自然科学版). 2021(02): 55-61 . 百度学术
4. 范志坤,夏忠跃,冯雷,贾佳,解健程. 雷家碛井区固井漏失层分析及固井防漏工艺技术. 复杂油气藏. 2021(03): 105-110 . 百度学术
5. 王涛,贾博超. 地层承压能力固井前动态测试方法. 探矿工程(岩土钻掘工程). 2019(02): 40-43 . 百度学术
6. 王涛. 致密气水平井固井技术——以延安气田东部上古生界气藏开发实践为例. 天然气技术与经济. 2019(01): 25-29+82 . 百度学术
7. 张建国. 一种易漏层固井低密度水泥浆研发. 当代化工. 2019(07): 1392-1395 . 百度学术
8. 王涛,吴金桥,李伟,杨先伦,王波. 高水灰比高掺量粉煤灰环保型低成本固井水泥浆的研制. 硅酸盐通报. 2019(07): 2260-2267 . 百度学术
9. 林四元,张杰,韩成,胡杰,田宗强,郑浩鹏. 东方气田浅部储层大位移水平井钻井关键技术. 石油钻探技术. 2019(05): 17-21 . 本站查看
10. 杨先伦,王涛,徐云林,白慧芳. 一种高强低密度水泥浆体系研发及应用——以延安气田延SS井区为例. 非常规油气. 2019(06): 110-116 . 百度学术
11. 李金伟. 油田固井技术研究与应用现状及前景探讨. 当代化工研究. 2018(04): 143-144 . 百度学术
其他类型引用(2)