Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology
-
摘要: 针对常规水力压裂用水量大、无水压裂难以达到高砂液比和泡沫压裂难以形成复杂裂缝等问题,提出了少水压裂技术的概念,即充分利用水力压裂、无水压裂和泡沫压裂的技术优势,在满足压裂造缝体积要求的基础上,最大限度地减少用水量。重点介绍了超临界二氧化碳与低黏度滑溜水复合破岩技术、基于多因素的多簇裂缝均衡延伸控制技术、造缝及携砂全程加砂技术和压裂后返排及生产全生命周期管理等少水压裂关键技术,给出了大幅度提高压裂液的造缝效率、最大限度提高多尺度水力裂缝的砂液比和应用微泡沫压裂液等少水压裂关键工艺。少水压裂技术的提出,对国内压裂思路转变和开发效果提升具有较强的理论价值和现实指导意义。Abstract: In view of the large water consumption in conventional hydraulic fracturing, the rare implementation for waterless fracturing to reach high sand liquid ratio, and the difficulty in forming complex fractures with foam fracturing, the concept of a less-water hydraulic fracturing technology was proposed. Making full use of the technical advantages of hydraulic fracturing, waterless fracturing and foam fracturing, less-water hydraulic fracturing can reduce the water consumption to the maximum on the basis of satisfying the fracture volume. This paper mainly introduces the key technologies of less-water hydraulic fracturing including the composite rock breaking technology of supercritical carbon dioxide and low-viscosity slick water, balanced extension control technology for multi-cluster fractures based on multiple factors, sand adding technology during the fracture creating and sand carrying process, and flowback and production life-circle management technology, etc. According to these technologies, key methods of less-water hydraulic fracturing were proposed, such as remarkable enhancement of the fracturing fluids’ facture creating efficiency, maximal improvement of the sand liquid ratio in the multi-scale hydraulic fractures and the application of micro-foam fracturing fluid, etc. The proposal of less-water hydraulic fracturing technology has strong theoretical value and significance in idea change of fracturing and development effect enhancement in China.
-
-
表 1 不同压裂流体对岩样破裂压力的影响试验结果
Table 1 Experimental results of the influence of different fracturingfluids on the fracture pressure of rock samples
岩样编号 压裂介质 应力差/
MPa围压/
MPa排量/
(mL·min−1)破裂压力/
MPaSC-4 超临界CO2 3 25 1.2 34.5 L-6 液态CO2 3 25 1.2 25.5 W-11 滑溜水 3 25 1.2 51.4 P-1 CO2泡沫 3 25 1.2 43.0 -
[1] JENNINGS A R Jr. 压裂液发展综述[J]. 曾中立, 译. 吐哈油气, 1996, 1(4): 71–76. JENNINGS A R Jr. Summary of fracturing fluid development[J]. Translated by ZENG Zhongli. Tuha Oil & Gas, 1996, 1(4): 71–76.
[2] 王世栋, 潘一, 李沼萱, 等. 非常规压裂液体系研究进展[J]. 现代化工, 2016, 36(10): 38–41. WANG Shidong, PAN Yi, LI Zhaoxuan, et al. Research progress in unconventional fracturing fluids[J]. Modern Chemical Industry, 2016, 36(10): 38–41.
[3] 杨浩珑, 向祖平, 李龙, 等. CO2泡沫双子表面活性剂清洁压裂液研究与试验[J]. 石油钻探技术, 2018, 46(2): 92–97. YANG Haolong, XIANG Zuping, LI Long, et al. Research and experiments of a clean fracturing fluid system with CO2 foam gemini surfactant[J]. Petroleum Drilling Techniques, 2018, 46(2): 92–97.
[4] 胡忠前, 马喜平, 何川, 等. 国外低伤害压裂液体系研究新进展[J]. 海洋石油, 2007, 27(3): 93–97. HU Zhongqian, MA Xiping, HE Chuan, et al. The latest development of foreign low-damage fracturing fluids systems[J]. Offshore Oil, 2007, 27(3): 93–97.
[5] 毛金成, 杨小江, 宋志峰, 等. 耐高温清洁压裂液体系HT-160的研制及性能评价[J]. 石油钻探技术, 2017, 45(6): 105–109. MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, et al. Development and performance evaluation of high temperature resistant clean fracturing fluid system HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105–109.
[6] 田亚莉. 川渝地区页岩气压裂配套工作液技术研究[D]. 成都: 西南石油大学, 2015. TIAN Yali. Research on working fluid technology of shale gas fracturing in Sichuan and Chongqing Area[D]. Chengdu: SouthwestPetroleum University, 2015.
[7] 贾婉琳, 曾勇, 张强斌, 等. 页岩气开采用水量影响因素分析[J]. 油气田环境保护, 2018, 28(2): 46–50,56. JIA Wanlin, ZENG Yong, ZHANG Qiangbin, et al. Analysis of influence factors of water consumption in shale gas exploitation[J]. Environmental Protection of Oil & Gas Fields, 2018, 28(2): 46–50,56.
[8] 宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析[J]. 干旱区研究, 2005, 22(2): 162–166. SONG Xiansong, SHI Peiji, JIN Rong. Analysis on the contradiction between supply and demand of water resources in China owing to uneven regional distribution[J]. Arid Zone Research, 2005, 22(2): 162–166.
[9] 谢勇. 浅析中国三级阶梯水资源量的分布[J]. 甘肃科技, 2013, 29(21): 42–43. XIE Yong. A brief analysis of the water resources distribution in the three terrain steps of China[J]. Gansu Science and Technology, 2013, 29(21): 42–43.
[10] 王俊豪, 漆林, 龙英. 无水压裂技术研究现状及发展趋势[J]. 石化技术, 2016, 23(12): 217–218. WANG Junhao, QI Lin, LONG Ying. Research status and development trend of waterless fracturing technology[J]. Petrochemical Industry Technology, 2016, 23(12): 217–218.
[11] 王满学, 何静, 王永炜. 耐高温低碳烃无水压裂液室内研究[J]. 石油钻探技术, 2017, 45(4): 93–96. WANG Manxue, HE Jing, WANG Yongwei. Experimental research on performances of hydrocarbon-based heat-resistance low-carbon fracturing fluid[J]. Petroleum Drilling Techniques, 2017, 45(4): 93–96.
[12] 韩烈祥, 朱丽华, 孙海芳, 等. LPG无水压裂技术[J]. 天然气工业, 2014, 34(6): 48–54. HAN Liexiang, ZHU Lihua, SUN Haifang, et al. LPG waterless fracturing technology[J]. Natural Gas Industry, 2014, 34(6): 48–54.
[13] 赵金洲, 刘鹏, 李勇明, 等. 适用于页岩的低分子烷烃无水压裂液性能研究[J]. 石油钻探技术, 2015, 43(5): 15–19. ZHAO Jinzhou, LIU Peng, LI Yongming, et al. The properties of non-aqueous fracturing fluid with low-molecular alkane suitable for shales[J]. Petroleum Drilling Techniques, 2015, 43(5): 15–19.
[14] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术: 应用现状与发展趋势[J]. 石油勘探与开发, 2014, 41(4): 466–472. LIU He, WANG Feng, ZHANG Jin, et al. Fracturing with carbon dioxide: application status and development trend[J]. PetroleumExploration and Development, 2014, 41(4): 466–472.
[15] 熊友明. 国内外泡沫压裂技术发展现状[J]. 钻采工艺, 1992, 15(1): 46–55. XIONG Youming. Current situation of foam fracturing technology at home and abroad[J]. Drilling & Production Technology, 1992, 15(1): 46–55.
[16] 张景超, 张显忠. 泡沫压裂技术的研究及应用前景[J]. 石油钻采工艺, 1991, 13(4): 71–74. ZHANG Jingchao, ZHANG Xianzhong. Research and application prospect of foam fracturing technology[J]. Oil Drilling & ProductionTechnology, 1991, 13(4): 71–74.
[17] 胡志明, 穆英, 顾兆斌, 等. 渗吸效应对页岩气赋存状态的影响规律[J]. 天然气工业, 2020, 40(5): 66–71. HU Zhiming, MU Ying, GU Zhaobin, et al. Law of imbibitioneffect on shale gas occurrence state[J]. Natural Gas Industry, 2020, 40(5): 66–71.
[18] POPE D S, LEUNG L K, GULBIS J. 粘滞指进对裂缝导流能力的影响[J]. 谢滨, 译. 国外油田工程, 1997(12): 20-23. POPE D S, LEUNG L K, GULBIS J. Influence of viscous fingering on fracture conductivity[J]. Translated by XIE Bin. Foreign Oilfield Engineering, 1997(12): 20-23.
[19] 周彤, 张士诚, 陈铭, 等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学(技术科学), 2019, 49(4): 469–478. doi: 10.1360/N092018-00059 ZHOU Tong, ZHANG Shicheng, CHEN Ming, et al. Competitive propagation of multi-fractures and their control on multi-clustered fracturing of horizontal wells[J]. Scientia Sinica Technologica, 2019, 49(4): 469–478. doi: 10.1360/N092018-00059
[20] 王晓燕, 刘莉君. 胶质气体泡沫(CGA) 特性优化试验研究[J]. 环境科学与技术, 2006, 29(1): 37–39. WANG Xiaoyan, LIU Lijun. Optimization of characteristics forcolloidal gas aphrons[J]. Environmental Science & Technology, 2006, 29(1): 37–39.
[21] 王湛. 胶质气体泡沫的制备及其驱油性能的研究[D]. 青岛: 中国石油大学(华东), 2011. WANG Zhan. Preparation of colloidal gas aphron and its properties study on oil displacement[D]. Qingdao: China University of Petroleum(East China), 2011.
[22] SEBBA F. Predispersed solvent extraction[J]. Separation Science and Technology, 1985, 20(5/6): 331–334.
[23] TELMADARREIE A, DOTA A, TRIVEDI J J, et al. CO2 microbubbles: a potential fluid for enhanced oil recovery: bulk and porous media studies[J]. Journal of Petroleum Science and Engineering, 2016, 138: 160–173. doi: 10.1016/j.petrol.2015.10.035
[24] 刘凯, 王前荣, 王维波. 微泡沫提高采收率技术研究进展[J]. 应用化工, 2017, 46(6): 1204–1209. LIU Kai, WANG Qianrong, WANG Weibo. Micro-foam EOR research progress[J]. Applied Chemical Industry, 2017, 46(6): 1204–1209.
[25] 王杰祥, 李娜, 孙红国, 等. 非均质油层空气泡沫驱提高采收率试验研究[J]. 石油钻探技术, 2008, 36(2): 4–6. WANG Jiexiang, LI Na, SUN Hongguo, et al. Experiment study of improved oil recovery through air foam flooding in heterogeneous reservoir[J]. Petroleum Drilling Techniques, 2008, 36(2): 4–6.
[26] GROWCOCK F B, KHAN A M, SIMON G A. Application ofwater-based and oil-based aphrons in drilling fluids[R]. SPE 80208, 2003.
[27] 赵福, 王平全, 李旭. 微泡沫钻井液Aphron最新进展[J]. 钻采工艺, 2008, 31(1): 123–124. ZHAO Fu, WANG Pingquan, LI Xu. Recent advance in aphron drilling fluids[J]. Drilling & Production Technology, 2008, 31(1): 123–124.
[28] 王桂全, 孙玉学, 李建新, 等. 微泡沫钻井液的稳定性研究与应用[J]. 石油钻探技术, 2010, 38(6): 75–78. WANG Guiquan, SUN Yuxue, LI Jianxin, et al. Stability of micro-foam drilling fluid and its application[J]. Petroleum DrillingTechniques, 2010, 38(6): 75–78.
[29] 王洪军, 焦震, 郑秀华, 等. 大庆油田微泡沫钻井液的研究与应用[J]. 石油钻采工艺, 2007, 29(5): 88–92. WANG Hongjun, JIAO Zhen, ZHENG Xiuhua, et al. Research and application of micro-foam drilling fluid in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2007, 29(5): 88–92.
[30] 张中宝, 李彦岭, 王贵, 等. 高温高压水基微泡沫钻井液静密度研究[J]. 石油钻探技术, 2008, 36(3): 66–68. ZHANG Zhongbao, LI Yanling, WANG Gui, et al. Study on HTHP density of water-based micro-foam drilling fluids[J]. Petroleum Drilling Techniques, 2008, 36(3): 66–68.
[31] RAMIREZ F, GREAVES R, MONTILVA J. Experience using microbubbles-aphron drilling fluid in mature reservoirs of Lake Maracaibo[R]. SPE 73710, 2002.
[32] GROWCOCK F B, SIMON G A, REA A B, et al. Alternative aphron-based drilling fluid[R]. SPE 87134, 2004.
-
期刊类型引用(5)
1. 倪小威,刘炜博,何虎庄,赵庆广,侯少勇,陈柳,刘迪仁. 基于图版迭代法的阵列侧向测井井场反演算法研究. 地球物理学进展. 2022(02): 648-655 . 百度学术
2. 倪小威,徐思慧,侯少勇,赵庆广,张玮,王彦秋,熊昶,刘迪仁. 自适应粒子群反演算法在阵列侧向测井严重失真井段的应用. 复杂油气藏. 2022(03): 44-50 . 百度学术
3. 胡松,王敏,田飞,赵磊. 基于水平井电阻率测井的井间夹层反演方法及应用. 石油钻探技术. 2021(03): 151-158 . 本站查看
4. 谢关宝,李永杰,吴海燕,黎有炎. 近井眼洞穴型地层双侧向测井敏感因素分析. 石油钻探技术. 2020(01): 120-126 . 本站查看
5. 冯进,倪小威,杨清,管耀,刘迪仁. 基于混合模拟退火算法的阵列侧向测井实时反演研究. 石油钻探技术. 2019(05): 121-126 . 本站查看
其他类型引用(3)