非均相聚合物驱油藏防砂井近井挡砂介质堵塞机理实验研究

王力智, 董长银, 何海峰, 曹庆平, 宋雅君

王力智, 董长银, 何海峰, 曹庆平, 宋雅君. 非均相聚合物驱油藏防砂井近井挡砂介质堵塞机理实验研究[J]. 石油钻探技术, 2020, 48(5): 92-99. DOI: 10.11911/syztjs.2020118
引用本文: 王力智, 董长银, 何海峰, 曹庆平, 宋雅君. 非均相聚合物驱油藏防砂井近井挡砂介质堵塞机理实验研究[J]. 石油钻探技术, 2020, 48(5): 92-99. DOI: 10.11911/syztjs.2020118
WANG Lizhi, DONG Changyin, HE Haifeng, CAO Qingping, SONG Yajun. An Experimental Study on the Plugging Mechanisms of Sand-Preventing Medium in the Near-Well Zone of Sand Control Wells in Heterogeneous Polymer-Flooding Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(5): 92-99. DOI: 10.11911/syztjs.2020118
Citation: WANG Lizhi, DONG Changyin, HE Haifeng, CAO Qingping, SONG Yajun. An Experimental Study on the Plugging Mechanisms of Sand-Preventing Medium in the Near-Well Zone of Sand Control Wells in Heterogeneous Polymer-Flooding Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(5): 92-99. DOI: 10.11911/syztjs.2020118

非均相聚合物驱油藏防砂井近井挡砂介质堵塞机理实验研究

基金项目: 国家自然科学基金项目“弱胶结储层微观出砂机理与颗粒级尺度出砂过程模拟研究”(编号:51774307)资助
详细信息
    作者简介:

    王力智(1996—),男,山东泰安人,2019年毕业于中国石油大学(华东)石油工程专业,在读硕士研究生,主要从事防砂控水完井方面研究工作。E-mail:cnsdwlz@126.com

    通讯作者:

    董长银,dongcy@upc.edu.cn

  • 中图分类号: TE357.46+1

An Experimental Study on the Plugging Mechanisms of Sand-Preventing Medium in the Near-Well Zone of Sand Control Wells in Heterogeneous Polymer-Flooding Reservoirs

  • 摘要: 针对非均相复合驱油田开发出现的聚合物堵塞问题,利用非均相复合驱介质堵塞模拟实验装置,使用粒径中值0.15 mm地层砂和粒径0.6~1.2 mm砾石,分别采用清水、增黏基液、聚合物与PPG复配液等3种流体以及防砂油井中的聚合物堵塞物样品,开展了聚合物堵塞物对近井挡砂介质的堵塞模拟实验。结果发现:砾石层内聚合物堵塞物明显趋向于沿高渗透带运移,受液体剪切携带会剥落小尺寸黏团,挤入深部砾石层孔喉中,阻碍了地层砂运移,从而加剧了砾石层的堵塞程度,导致总体渗透率下降,且堵塞程度与堵塞物含量呈正相关。研究结果表明,非均相复合驱砾石充填防砂井近井地带堵塞是聚合物原液、聚合物堵塞物及固相颗粒的物理化学复合堵塞的结果,需尽早采取解堵措施,防止堵塞程度进一步加剧。
    Abstract: In light of the plugging problem in oilfield development using the heterogeneous polymer flooding, a simulation experiment to evaluate the plugging due to polymer plug in the sand-preventing medium in the near-well zone was carried out. It used a experimental simulation device of medium plugging of heterogeneous composite flooding. In the experiment, formation sand with grain sized averaging a diameter of 0.15 mm and gravel with a diameter range of 0.6–1.2 mm were used. In conjunction, three types of fluids, including clear water, a tackifying base fluid and a compound fluid contained PPG and polymer material were used. Further, the polymer plug samples in the sand control wells were used, respectively. The results showed that while it was in the gravel packing layer, the plug tended to migrate along the high permeability zone. Carried by fluid shear, the small viscous balls would be peeled off from the plug and then squeezed into the pores and throats in the deep gravel layer. These small, viscous balls impeded the migration of formation sand and intensified the degree of plugging degree in the gravel layer, which was positively related to the plug content. The outcome was a decrease in overall permeability. The results showed that the plugging in the near-well zone of gravel packed sand control wells treated by heterogeneous polymer flooding was a result of physical and chemical compound plugging of polymer dope, plug and solid particles. Early de-plugging measures should be taken to prevent plugging degree aggravation.
  • 图  1   非均相复合驱介质堵塞模拟实验装置

    Figure  1.   Experimental simulation device of medium plugging of heterogeneous composite flooding

    图  2   甲组实验中填充砾石模拟延伸状态的高渗透带

    Figure  2.   Simulation of the high permeability zone in the extension state utilizing gravel filling in group A

    图  3   乙组实验中填充砾石模拟存在尖灭的高渗透带

    Figure  3.   Simulation of the high permeability zone with pinch out utilizing gravel filling in group B

    图  4   不同孔道类型条件下砾石层总体渗透率变化曲线

    Figure  4.   Overall permeability variation curve of gravel layer under different channel type conditions

    图  5   甲组实验中不同位置处的堵塞物侵入形态

    Figure  5.   Experimental results of plug intrusion pattern at different positions in group A

    图  6   乙组实验中不同位置堵塞物侵入形态

    Figure  6.   Experimental results of plug intrusion pattern at different positions in group B

    图  7   储层多孔介质及近井储层聚合物堵塞物运移堵塞原理示意

    Figure  7.   Schematic diagram of migration and plugging of polymer plug in porous media and near well formation

    图  8   聚合物堵塞物对砾石层总体渗透率的影响

    Figure  8.   Effect of polymer plug on the overall permeability of gravel layer

    图  9   不同位置的聚合物堵塞物侵入形态

    Figure  9.   Polymer plug intrusion pattern at different positions

    图  10   堵塞物成分和含量对砾石层总体渗透率的影响

    Figure  10.   Effect of different plug composition and content on the overall permeability of gravel layer

    图  11   处理后堵塞物侵入砾石层显微照片

    Figure  11.   Photomicrograph of the plug intruding into the gravel layer after treatment

    图  12   聚合物堵塞物加剧堵塞原理示意

    Figure  12.   Schematic diagram of plugging aggravation brought by polymer plug

    表  1   聚合物堵塞物样品元素分析结果

    Table  1   Element analysis results of polymer plug samples

    元素CONaMgAlSiSClCaFe
    质量分数,%51.8035.901.810.530.651.570.571.424.721.02
    摩尔分数,%63.2232.371.140.320.350.810.260.581.700.26
    下载: 导出CSV
  • [1]

    WANG Zhihua, LIN Xinyu, YU Tianyu, et al. Case history of dehydration-technology improvement for HCPF production in the Daqing Oil Field[R]. SPE 172768, 2016.

    [2] 孙焕泉. 聚合物驱后井网调整与非均相复合驱先导试验方案及矿场应用:以孤岛油田中一区Ng3单元为例[J]. 油气地质与采收率, 2014, 21(2): 1–4. doi: 10.3969/j.issn.1009-9603.2014.02.001

    SUN Huanquan. Application of pilot test for well pattern adjusting heterogeneous combination flooding after polymer flooding:case of Zhongyiqu Ng3 Block, Gudao Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(2): 1–4. doi: 10.3969/j.issn.1009-9603.2014.02.001

    [3] 石静,曹绪龙,王红艳,等. 胜利油田高温高盐稠油油藏复合驱技术[J]. 特种油气藏, 2018, 25(4): 129–133. doi: 10.3969/j.issn.1006-6535.2018.04.026

    SHI Jing, CAO Xulong, WANG Hongyan, et al. Combination flooding technology used in high-temperature, high-salinity heavy oil reservoirs of Shengli Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 129–133. doi: 10.3969/j.issn.1006-6535.2018.04.026

    [4] 王友启. 胜利油田聚合物驱后二元复合驱油体系优化[J]. 石油钻探技术, 2007, 35(5): 101–103. doi: 10.3969/j.issn.1001-0890.2007.05.029

    WANG Youqi. Optimization of binary combination oil displacement system after polymer flooding in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2007, 35(5): 101–103. doi: 10.3969/j.issn.1001-0890.2007.05.029

    [5] 任亭亭,宫厚健,桑茜,等. 聚驱后B-PPG与HPAM非均相复合驱提高采收率技术[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 54–58.

    REN Tingting, GONG Houjian, SANG Qian, et al. Enhanced oil recovery by HPAM/B-PPG heterogeneous composite flooding after polymer flooding[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2015, 30(5): 54–58.

    [6] 陈霆,孙志刚. 不同化学驱油体系微观驱油机理评价方法[J]. 石油钻探技术, 2013, 41(2): 87–92. doi: 10.3969/j.issn.1001-0890.2013.02.017

    CHEN Ting, SUN Zhigang. Microscopic flooding mechanism of different chemical displacement systems[J]. Petroleum Drilling Techniques, 2013, 41(2): 87–92. doi: 10.3969/j.issn.1001-0890.2013.02.017

    [7] 王贵江,张杰,苑光宇,等. 中高矿化度聚表剂乳化性能及稳定乳状液驱油机理[J]. 特种油气藏, 2019, 26(4): 142–147. doi: 10.3969/j.issn.1006-6535.2019.04.025

    WANG Guijiang, ZHANG Jie, YUAN Guangyu, et al. Emulsifying performance of medium-high salinity polymer surfactant and displacement mechanism of true emulsion[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 142–147. doi: 10.3969/j.issn.1006-6535.2019.04.025

    [8]

    CUI Xiaohong, LI Zhenquan, CAO Xulong, et al. A novel PPG enhanced surfactant-polymer system for EOR[R]. SPE 143506, 2011.

    [9]

    RAI K, JOHNS R T, LAKE L W, et al. Oil-recovery predictions for surfactant polymer flooding[R]. SPE 124001, 2009.

    [10] 孟向丽,赵立强,徐昆,等. 注聚合物井堵塞原因和解堵技术[J]. 石油钻采工艺, 2011, 33(3): 70–73. doi: 10.3969/j.issn.1000-7393.2011.03.019

    MENG Xiangli, ZHAO Liqiang, XU Kun, et al. Reason analysis on plugging in polymeric damaged well and the technology of broken down[J]. Oil Drilling & Production Technology, 2011, 33(3): 70–73. doi: 10.3969/j.issn.1000-7393.2011.03.019

    [11]

    JOLMA I W, STRAND D, STAVLAND A, et al. When size matters-polymer injectivity in chalk matrix[C/OL]//European Association of Geoscientists & Engineers. Conference proceedings, IOR 2017—19th European Symposium on Improved Oil Recovery.[2020–03–20]. https://doi.org/10.3997/2214-4609.201700362.

    [12]

    GUO Hu. How to select polymer molecular weight and concentration to avoid blocking in polymer flooding?[R]. SPE 189255, 2017.

    [13] 郑俊德,张英志,任华,等. 注聚合物井堵塞机理分析及解堵剂研究[J]. 石油勘探与开发, 2004, 31(6): 108–111. doi: 10.3321/j.issn:1000-0747.2004.06.029

    ZHENG Junde, ZHANG Yingzhi, REN Hua, et al. Blockage mechanism and blockage reducer for polymer-injection well[J]. Petroleum Exploration and Development, 2004, 31(6): 108–111. doi: 10.3321/j.issn:1000-0747.2004.06.029

    [14] 张浩,龚舒哲. 注聚合物井堵塞因素分析[J]. 中国科技信息, 2005(15): 116. doi: 10.3969/j.issn.1001-8972.2005.15.092

    ZHANG Hao, GONG Shuzhe. Analysis of plugging factors in polymer injection wells[J]. China Science and Technology Information, 2005(15): 116. doi: 10.3969/j.issn.1001-8972.2005.15.092

    [15] 刘继莹,张居和. 聚合物驱后储层内残留聚合物分布特征[J]. 大庆石油地质与开发, 2016, 35(2): 86–91. doi: 10.3969/J.ISSN.1000-3754.2016.02.016

    LIU Jiying, ZHANG Juhe. Distribution characteristics of the polymer residue in the polymer flooded reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(2): 86–91. doi: 10.3969/J.ISSN.1000-3754.2016.02.016

    [16] 董长银,高凯歌,王静,等. 注聚驱防砂井挡砂介质物理化学复合堵塞机制试验[J]. 中国石油大学学报(自然科学版), 2016, 40(5): 104–111.

    DONG Changyin, GAO Kaige, WANG Jing, et al. Experimental study on mechanical and chemical combined plugging mechanism of sand control media in heavy oil reservoirs with polymer flooding[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(5): 104–111.

    [17] 刘东,李丽,周承诗,等. 注聚区油井防砂层堵塞原因与解堵措施[J]. 中国石油大学学报(自然科学版), 2010, 34(2): 78–82.

    LIU Dong, LI Li, ZHOU Chengshi, et al. Plugging mechanism and plug removing of sand control area in polymer injection well[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(2): 78–82.

    [18] 吕斌. 浅层疏松砂岩稠油油藏聚合物驱矿场试验效果评价[J]. 科学技术与工程, 2019, 19(10): 82–88. doi: 10.3969/j.issn.1671-1815.2019.10.013

    LYU Bin. Effect evaluation on the industrial experiment with polymer flooding in the shallow unconsolidated sandstone heavy oil reservoir[J]. Science Technology and Engineering, 2019, 19(10): 82–88. doi: 10.3969/j.issn.1671-1815.2019.10.013

    [19] 王志刚,李爱芬,张红玲,等. 砾石充填防砂井砾石层堵塞机理实验研究[J]. 石油大学学报(自然科学版), 2000, 24(5): 49–51.

    WANG Zhigang, LI Aifen, ZHANG Hongling, et al. Experimental study on pore-blocking mechanism in gravel packs of sand control well[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2000, 24(5): 49–51.

    [20] 高凯歌,董长银,高聚同,等. 防砂井投产初期砾石层渗透率损害规律[J]. 石油钻采工艺, 2016, 38(6): 876–881.

    GAO Kaige, DONG Changyin, GAO Jutong, et al. Regularity of permeability loss in gravel-packing layer for sand control during initial production[J]. Oil Drilling & Production Technology, 2016, 38(6): 876–881.

    [21] 董长银.油气井防砂技术[M].北京: 中国石化出版社, 2009: 29–40.

    DONG Changyin. Sand control technology for oil & gas wells[M]. Beijing: China Petrochemical Press, 2009: 29–40.

    [22] 董长银,周玉刚,陈强,等. 流体黏速物性对砾石层堵塞影响机制及充填防砂井工作制度优化实验[J]. 石油勘探与开发, 2019, 46(6): 1178–1186.

    DONG Changyin, ZHOU Yugang, CHEN Qiang, et al. Effects of fluid flow rate and viscosity on gravel-pack plugging and the optimization of sand-control wells production[J]. Petroleum Exploration and Development, 2019, 46(6): 1178–1186.

  • 期刊类型引用(6)

    1. 王亮亮,王杰祥,张鹏,王鹏,陈毅,宋伟. 酸化气驱交变载荷对超深层岩石强度及出砂影响. 断块油气田. 2023(01): 136-142 . 百度学术
    2. 孙孟莹,邓金根,桂云,李华洋,冯永存. 自洁缝防砂筛管对注聚采油粘度影响研究. 应用化工. 2023(08): 2261-2264 . 百度学术
    3. 周萍. 聚合物驱油机理及增效途径. 化学工程与装备. 2023(11): 41-43 . 百度学术
    4. 张云飞,苏延辉,江安,郑晓斌,黄毓祥,崔国亮,王康男. 人工井壁防砂树脂涂覆颗粒耐冲刷性能评价实验装置研制与应用. 特种油气藏. 2022(01): 169-174 . 百度学术
    5. 王亮亮,王杰祥,王鹏,周怀光,钟婷,陈毅,宋伟. 东河油田注气出砂主次影响因素及技术对策. 断块油气田. 2022(05): 680-686 . 百度学术
    6. 张明,程飞,高科超,李瑞峰. 渤海深部地层出砂预测研究. 石化技术. 2021(03): 133-134+162 . 百度学术

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  143
  • PDF下载量:  60
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-08-13
  • 网络出版日期:  2020-08-30
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回