Borehole Strengthening Technology with Oil-Based Drilling Fluid in the Western Sichuan Basin
-
摘要: 钻进川西地区深部地层时,井漏、井眼垮塌和卡钻问题频发,如采用油基钻井液钻进,则不易形成厚滤饼且滤饼致密性差,井筒压力穿透能力强。针对该问题,根据钻井液成膜机理,采用核壳结构设计,以苯乙烯、丙烯酸酯类等为原料,合成了一种适用于该地区深井钻井中地层温度≤150 ℃中部层位的致密膜护壁剂CQ-NFF;根据风险地层的地质特性、工程特性分析结果和d90规则,选用超细碳酸钙、弹性石墨、高强度树脂和高分散纤维复配形成了内充填封堵剂。采用扫描电镜分析了钻井液的成膜机理及形貌,通过高温高压滤失、高温渗透失水、高温渗透失油试验评价了钻井液的成膜效应,通过高温高压砂床滤失试验评价了充填材料的承压封堵能力。结果表明,CQ-NFF可在油包水乳状液和油基钻井液中形成致密薄膜,并有效吸附在滤饼表面,薄膜承压封堵能力达到2.0 MPa;将内填充封堵剂加入油基钻井液后,内滤饼的承压能力可提高至3.5 MPa以上。以上述处理剂为核心的川西地区油基钻井液井壁强化技术,在双探6井和中江2井进行了现场试验,深层井漏、井眼垮塌、卡钻等井下故障时间大幅缩短,试验效果显著。Abstract: Wellbore collapse, lost circulation and sticking frequently happen in deep formations when drilling in the western Sichuan Basin. When drilling with oil-based drilling fluids, it is difficult for a thick filter cake to form. Plus, the low density of the filter cake leads to high pressure penetration ability at the wellbore. To solve this problem, based on the mechanism of drilling fluid film forming, a wellbore protection agent with the compact film, CQ-NFF, was synthesized from styrene, acrylate and other raw materials using the core-shell structural design, which is suitable for the middle layer with a temperature no more than 150 °C in deep well drilling in the area. According to the analysis results of the geological characteristics and engineering characteristics of high-risk formations and the d90 rule, an inner-filling plugging agent was formed from ultra-fine grains of calcium carbonate, elastic graphite, high strength resin and highly dispersed fiber. The film-forming mechanism and morphology of drilling fluid were analyzed by scanning electron microscope (SEM). Film forming effects were evaluated in filtration tests under high temperature and high pressure along with water and oil loss tests during drilling penetration at high temperature. By means of the sand bed filtration experiments under high temperature and high pressure, the plugging capacity of the filling material was evaluated. Experimental results show that CQ-NFF can form a compact film in water-in-oil emulsion and oil-based drilling fluid, and the film can be adsorbed on the surface of the filter cake effectively. The pressure resisting and plugging capacity of the film can reach 2.0 MPa. After the inner-filling plugging agent was added to the oil-based drilling fluid, the pressure bearing capacity of the inner filter cake was increased to over 3.5 MPa. The borehole strengthening technology with oil-based drilling fluid, treating chemicals as the core, was applied in Well Shuangtan 6 and Well Zhongjiang 2. The results show a remarkable application effect that the downhole downtime due to lost circulation in deep formations, wellbore collapse or drill pipe sticking were greatly reduced.
-
顺北油气田属于超深超高温断控型储集体,储层沿多条断裂带分布[1]。目前勘探开发的1号、4号、5号和8号断裂带二叠系发育大段火成岩,二叠系长裸眼井段固井漏失率接近100%,导致环空水泥填充率严重不足,套损问题频发[2-4],修井损失达千万元。为防止固井漏失,前期采取了多种固井浆体防漏和固井防漏技术措施,如采用Sealbond堵漏隔离液、温敏型堵漏隔离液等进行隔离液防漏,采用温敏防漏堵漏水泥浆、纤维堵漏水泥浆等进行防漏[5-7],采用密度1.20~1.40 kg/L的高强度低密度水泥浆进行双级固井防漏[8-12],采用密度1.18 kg/L的泡沫水泥浆进行单级固井防漏[13-14],以及采用正注反挤固井等防漏技术措施[15-16],但以上技术措施均无法完全解决漏失难题。
根据上述分析,决定采用工具防漏。经过技术攻关,研制了具有环空封隔能力的封隔式分级箍,其在实现双级固井的同时还可以封隔漏层,在顺北油气田9口井进行了应用,防漏效果显著。
1. 顺北油气田固井技术难点
顺北油气田储层埋深7 200~8 800 m,各断裂带地质条件差异大,二叠系埋深3 300~5 500 m,多为杂乱相,并含有厚度达350~500 m的大段火山岩,漏失风险极高。
1)二叠系承压不明确。钻井期间漏失严重[17-18],固井前无法建立循环或持续漏失,难以明确地层承压能力。
2)长裸眼固井防漏难度大。为满足完井要求,顺北油气田超深井多采用长裸眼井身结构,裸眼段长度超过4 000 m,环空摩阻高,而且,同时封隔多个压力体系,防漏难度大。
3)常规固井防漏技术措施效果差。前期从前置液、水泥浆体系和固井工艺等多方面进行固井防漏,但固井时漏失量仍达300~900 m3;井口挤水泥进行补救后,环空水泥缺失长度仍超过2 000 m。
2. 封隔式分级箍研制
常规双级固井时,由于一级固井大量漏失或失返性漏失导致漏层无法封固,会造成二级固井时继续漏失。因此,在分级箍底部设计封隔器,不仅可以实现双级固井,还可以在一级固井结束后胀封封隔器,彻底封隔漏层,防止二级固井时继续漏失,提高水泥环完整性。同时,封隔器胀封后具有一定的环空封隔能力,并在分级箍循环孔关闭后能够保证管内密封能力不低于套管抗内压强度,提高套管柱完整性(见图1)。
通过对比国外相关产品的特点[19-22],研制了封隔式分级箍[23],其主要包括分级箍单元、连接阀单元和水力扩张封隔器单元(见图2)。
封隔式分级箍主要具有以下技术特点:
1)分级箍单元下部添加封隔器的注液通道,注液通道采用机械方式开启和关闭。一级固井结束后投入重力塞,重力塞到达打开塞座后加压开启封隔器注液通道;小排量阶梯式加压,稳压2~3次,直至封隔器完全胀封后关闭注液通道;再继续加压,可以打开分级箍循环孔。为防止循环孔提前打开和关闭,设计分级箍循环孔打开压力大于封隔器开启和关闭压力。
2)连接阀单元设置3个控制阀。开启阀设计为压力触发,是封隔器注液通道的第二道保险;单向阀可保证注液单向流动,不回流;关闭阀设计为压力触发,当封隔器内部压力达到设定值时关闭注液通道,永久密封内部液体,保证继续加压可打开分级箍循环孔。
3)封隔器单元由基管和胶筒组成。为保证胶筒胀封后拥有足够的环空封隔能力和更有效地贴合井眼,胶筒内部设计采用非连续式金属片进行支撑;胶筒两端固定,保证下入安全。
根据顺北油气田生产的需要,研制了ϕ177.8~ϕ273.1 mm多种规格的封隔式分级箍,主要性能参数见表1。
表 1 不同规格封隔式分级箍主要性能参数Table 1. Main performance parameters for stage cementing collar with packer of different specifications套管直径/
mm整机密封
能力/MPa封隔器注液
打开压力/MPa封隔器注液
关闭压力/MPa循环孔打开
压力/MPa循环孔关闭
压力/MPa环空封隔
能力/MPa管内密封
能力/MPa胶筒长度/
mm本体最大
外径/mm本体内径/
mm177.8 35 7.0±0.5 13.0±0.5 15.0±0.5 5.0±0.5 20 80 1200 210 156 193.7 35 7.0±0.5 13.0±0.5 15.0±0.5 5.0±0.5 20 75 1200 230 168 244.5 35 7.0±0.5 11.0±0.5 14.0±0.5 5.0±0.5 35 65 1200 290 220 273.1 35 7.0±0.5 11.0±0.5 14.0±0.5 5.0±0.5 35 50 1200 312 244 3. 室内性能评价试验
下面以ϕ193.7 mm封隔式分级箍为例,进行整机组装后的室内性能评价试验。
3.1 整机密封能力
封隔式分级箍整机组装后上部连接ϕ193.7 mm短套管,短套管顶部连接上试压封头,封隔式分级箍下部连接下试压封头,使用4DSY-22/63型电动试压泵对其进行试压,验证封隔式分级箍的整机密封能力。整机加压至35.5 MPa(设计35.0 MPa),稳压15 min后压力稳定无下降(见图3),表明其密封性能良好。
3.2 封隔器胀封性能
整机密封试验结束后,拆卸下试压封头,将封隔式分级箍放入试验井眼内,并连接限位接头;拆卸上试压封头,投入重力塞,重新连接上试压封头;使用电动试压泵进行加压,将重力塞泵送至打开塞座后,加压至6.2 MPa(设计7.0 MPa),此时压力瞬间下降,表明封隔器注液通道已开启;继续加压至6.9 MPa时封隔器开启阀打开,开始注液;注液期间稳压3~4 min后,压力继续阶梯式缓慢上升,当压力升至16.0 MPa(设计15.0 MPa)时触发封隔器关闭阀,注液通道关闭(见图4),封隔器胀封完毕。
3.3 封隔器环空封隔能力
封隔器胀封完毕后,连接封隔式分级箍与模拟井眼环空试压口,进行封隔器环空封隔能力试验。模拟井眼设置为ϕ250.8 mm井眼,井径扩大率10%。使用电动试压泵对环空进行多次加压、稳压,最高加压至43.8 MPa(设计20.0 MPa),环空封隔效果仍良好,无渗漏(见图5)。
3.4 分级箍循环孔打开、关闭性能
封隔器环空封隔能力试验结束后,重新连接ϕ193.7 mm短套管的上试压封头,使用电动试压泵对封隔式分级箍内部加压,加压至18.2 MPa(设计15.0 MPa)时压力瞬间下降,表明分级箍循环孔打开(见图6)。拆卸上试压封头,投入关闭塞,重新连接上试压封头;继续加压,将关闭塞泵送至关闭塞座后,加压至6.2 MPa(设计5.0 MPa)时,分级箍循环孔关闭。
3.5 循环孔关闭后的管内密封能力
分级箍循环孔关闭后,连接下部盲板,加压至75.1 MPa(ϕ193.7 mm套管抗内压74.9 MPa),稳压15 min,无压降、无渗漏,表明封隔式分级箍的循环孔关闭后管内密封良好(见图7)。
4. 现场应用
顺北油气田9口井应用封隔式分级箍进行了固井施工,井下操作安全可靠,二级固井的平均漏失量由105.1 m3降至3.4 m3,环空水泥平均缺失长度由2 048 m缩短至约350 m,节省漏失和挤水泥补救费用约1 100万元,具体应用情况见表2。下面以SHBF-O9H井为例分析其应用效果。
表 2 封隔式分级箍在顺北油气田的应用情况统计Table 2. Application of stage cementing collar with packer in the Shunbei Oil & Gas Field年份 井号 二叠系井段/m 套管直径/mm 封隔式分级箍位置/m 一级固井漏失量/m3 二级固井漏失量/m3 水泥环缺失长度/m 2021 SHBX-2YH 3 702~4 261 273.1 3 644.90 366.5 0 265 2021 顺北Z4X 3 886~4 384 193.7 3 651.40 0 0 710 2021 SHBX-8H 4 370~5 034 273.1 4 356.10 474.0 0 305 2021 顺北EY2X 3 458~4 030 193.7 3 400.00 374.5 23.3 700 2022 SHBF-O9H 4 592~5 154 244.5 3 685.70 280.0 0 390 2022 SHBZ-O2H 3 644~4 162 273.1 3 381.20 437.9 0 370 2022 SHBE-X3H 3 415~3 983 273.1 3 008.70 399.2 0 100 2022 顺北E10X 3 264~3 812 273.1 3 013.30 395.0 0 0 2022 顺北T1X 4 104~4 711 273.1 4 078.80 265.1 6.9 140 SHBF-O9H井是一口四级井身结构井,钻进二叠系(4 592~5 154 m井段)期间漏失密度1.25 kg/L的钻井液305.7 m3,中完井深5 210.00 m,采用ϕ244.5 mm套管进行双级固井。根据井径情况,将封隔式分级箍安装在二叠系以浅且井径较规则的井深3 685.70 m处;下套管期间漏失钻井液98.0 m3,固井前持续漏失。
一级固井领浆采用密度1.25 kg/L的低密度水泥浆,尾浆采用密度1.88 kg/L的常规水泥浆,固井漏失量280.0 m3。替浆结束后投入重力塞,重力塞下行到预定位置后,加压胀封封隔器,加压至6.8 MPa时开始注液,继续阶梯式加压,压力由6.8 MPa逐步提高至8.0,10.0和11.4 MPa,每次稳压3~5 min,压降0~0.1 MPa;加压至12.0 MPa时触发封隔器关闭阀,胀封作业结束;继续加压至14.3 MPa时压力瞬间下降,顺利打开循环孔,成功建立循环。候凝24 h,期间每隔1 h顶通一次,无漏失,初步验证封隔式分级箍已封隔漏层。
二级固井领浆采用密度1.90 kg/L的常规水泥浆,尾浆采用密度1.60 kg/L的低密度水泥浆,替浆到量碰压,压力由7.0 MPa瞬间升至14.8 MPa,循环孔关闭,稳压5 min无回流;水泥浆返出地面,二级固井无漏失。该井环空水泥环充填率约为93.0%,封隔式分级箍两侧的固井声幅质量差异较大,分级箍以上井段胶结质量优质,分级箍以下井段存在215 m长的环空自由段,表明封隔式分级箍成功封隔下部漏层,降低了二级固井漏失风险。
5. 结论与建议
1)根据顺北油气田生产需求,研制了不同规格的封隔式分级箍,室内试验表明,该分级箍能够实现封隔式胀封和分级箍循环孔的打开与关闭,环空封隔能力和管内密封能力满足防漏固井要求。
2)封隔式分级箍已在顺北油气田应用9口井,井下操作安全,可靠性高,降低了二级固井漏失量,提高了环空水泥环充填率,完全满足顺北油气田长裸眼防漏固井需求。
3)封隔式分级箍可在固井时封隔漏层,降低固井漏失风险,保证二级固井水泥浆返高,对长裸眼易漏失地层固井有较强的适用性。
-
表 1 CQ-NFF在油包水乳状液中的成膜封堵效应评价结果
Table 1 Evaluation results of the film-forming plugging effect of CQ-NFF in water-in-oil emulsion
CQ-NFF加量,% 高温高压
滤失量/mL高温渗透
失油量/mL高温渗透
失水量/mL高温渗透失油最大
承压能力/MPa高温渗透失水最大
承压能力/MPa0 击穿 击穿 击穿 0.5 MPa击穿 0.5 MPa击穿 1.0 5.5 击穿 击穿 0.5 0.5 MPa击穿 2.0 2.0 28.4 击穿 1.5 0.5 3.0 2.4 13.6 27.0 1.5 0.5 4.0 0.5 8.2 19.2 2.0 1.0 表 2 CQ-NFF对油基钻井液基本性能的影响
Table 2 The effect of CQ-NFF on basic properties of oil-based drilling fluid
CQ-NFF加量,% 表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/
Pa静切力/Pa 破乳电压/
V高温高压
滤失量/ mL滤饼厚度/
mm高温渗透
失水量/mL高温渗透
失油量/mL初切 终切 0 70 65 5 3.0 8.0 1 418 7.0 1.5 击穿 击穿 1.0 75 66 9 3.5 10.5 1 467 0.2 1.5 37.4 4.6 2.0 93 82 11 5.5 15.5 1 417 0.2 1.5 28.2 3.4 表 3 内充填封堵剂对油基钻井液流变性的影响
Table 3 Effect of inner-filling plugging agent on rheological properties of oil-based drilling fluid
内充填封堵剂 表观黏度/
(mPa·s)塑性黏度/
(mPa·s)动切力/Pa 六速黏度计读数 静切力/Pa 破乳电压/V Φ6 Φ3 初切 终切 未加入 60.0 54 6.0 5 4 3.5 7.0 918 加入 95.5 80 15.5 11 10 7.0 16.5 987 注:内充填封堵剂的具体配方为3.0%400目超细碳酸钙+2.0%弹性石墨+1.0%高强度树脂+0.1%高分散纤维。下同。 表 4 内充填封堵剂承压封堵能力评价结果
Table 4 Evaluation results of the pressure resisting and plugging capacity of the inner-filling plugging agent
内充填封堵剂 砂床滤失量/mL 砂床强化后清水承压能力/MPa 砂床强化后白油承压能力/MPa 未加入 14.8 0.5 0.5 加入 0 ≥3.5 ≥3.5 表 5 中江2井与川西火山岩层钻井故障情况对比
Table 5 Comparison of the drilling failures of Well Zhongjiang 2 and volcanic layers in western Sichuan Basin
井名 火山岩岩性 井下故障类型 井下故障时间/h 井下故障时间占比(同开次),% 大深001-X1井 凝灰岩、杏仁状玄武岩 垮塌、卡钻导致侧钻 1 034.99 23.25 大深001-X3井 凝灰岩、杏仁状玄武岩 垮塌、卡钻导致侧钻 1 077.25 38.69 大深001-X4井 凝灰岩、杏仁状玄武岩 垮塌 239.59 15.03 莲探1井 凝灰岩、杏仁状玄武岩 垮塌、卡钻导致侧钻 6 044.85 90.93 永探1井 凝灰岩、灰绿岩、杏仁状玄武岩 井漏、垮塌 80.48 2.73 中江2井 凝灰岩、杏仁状玄武岩 无 0 0 -
[1] 伍贤柱,万夫磊,陈作,等. 四川盆地深层碳酸盐岩钻完井技术实践与展望[J]. 天然气工业,2020,40(2):97–105. doi: 10.3787/j.issn.1000-0976.2020.02.011 WU Xianzhu, WAN Fulei, CHEN Zuo, et al. Drilling and completion technologies for deep carbonate rocks in the Sichuan Basin: practices and prospects[J]. Natural Gas Industry, 2020, 40(2): 97–105. doi: 10.3787/j.issn.1000-0976.2020.02.011
[2] 万夫磊,唐梁,王贵刚. 川西双鱼石构造复杂深井安全快速钻井技术研究与实践[J]. 钻采工艺,2017,40(5):29–32. doi: 10.3969/J.ISSN.1006-768X.2017.05.09 WAN Fulei, TANG Liang, WANG Guigang. Research and application of deep well drilling technique for Shuangyushi Structure in West Sichuan[J]. Drilling & Production Technology, 2017, 40(5): 29–32. doi: 10.3969/J.ISSN.1006-768X.2017.05.09
[3] 王星媛,米光勇,王强. 川西南部沙湾组—峨眉山玄武岩井段井壁失稳机理分析及应对措施[J]. 钻井液与完井液,2018,35(6):55–59. doi: 10.3969/j.issn.1001-5620.2018.06.0010 WANG Xingyuan, MI Guangyong, WANG Qiang. Borehole wall instability encountered in drilling the Shawan Formation-Emeishan Basalt Formation in Southwest Sichuan: mechanisms and countermeasures[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 55–59. doi: 10.3969/j.issn.1001-5620.2018.06.0010
[4] 胡大梁,欧彪,郭治良,等. 川西二叠系超深风险井永胜1 井钻井关键技术[J]. 断块油气田,2019,26(4):524–528. HU Daliang, OU Biao, GUO Zhiliang, et al. Key drilling technology of Permian ultra-deep risk exploration well YS1 in western Sichuan[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 524–528.
[5] 胡大梁,欧彪,何龙,等. 川西海相超深大斜度井井身结构优化及钻井配套技术[J]. 石油钻探技术,2020,48(3):22–28. HU Daliang, OU Biao, HE Long, et al. Casing program optimization and drilling matching technologies for marine ultra-deep highly deviated wells in western Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3): 22–28.
[6] 邱正松,暴丹,李佳,等. 井壁强化机理与致密承压封堵钻井液技术新进展[J]. 钻井液与完井液,2018,35(4):1–6. doi: 10.3969/j.issn.1001-5620.2018.04.001 QIU Zhengsong, BAO Dan, LI Jia, et al. Mechanisms of wellbore strengthening and new advances in lost circulation control with dense pressure bearing zone[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 1–6. doi: 10.3969/j.issn.1001-5620.2018.04.001
[7] 卢小川,范白涛,赵忠举,等. 国外井壁强化技术的新进展[J]. 钻井液与完井液,2012,29(6):74–78. doi: 10.3969/j.issn.1001-5620.2012.06.023 LU Xiaochuan, FAN Baitao, ZHAO Zhongju, et al. New research progress on wellbore strengthening technology[J]. Drilling Fluid & Completion Fluid, 2012, 29(6): 74–78. doi: 10.3969/j.issn.1001-5620.2012.06.023
[8] van OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519–530.
[9] WANG Hong, SWEATMAN R E, ENGELMAN R, et al. Best practice in understanding and managing lost circulation challenges[J]. SPE Drilling & Completion, 2008, 23(2): 168–175.
[10] 宋丁丁.井壁强化提高地层承压能力作用机理探讨[D].青岛: 中国石油大学(华东), 2016. SONG Dingding. Study on the mechanisms of wellbore strengthening to enhance formation pressure-bearing capacity[D]. Qingdao: China University of Petroleum (East China), 2016.
[11] 孙金声, 蒲晓林.水基钻井液成膜理论与技术[M].北京: 石油工业出版社, 2013: 2. SUN Jinsheng, PU Xiaolin. Film forming theory and technology of water based drilling fluid[M]. Beijing: Petroleum Industry Press, 2013: 2.
[12] 李浩.水基成膜钻井液体系的研究与应用[D].成都: 成都理工大学, 2010. LI Hao. Research and application of water-based film forming drilling fluid system[D]. Chengdu: Chengdu University Of Technology, 2010.
[13] 匡绪兵. 具核结构的油基钻井液封堵剂的研制[J]. 钻井液与完井液,2015,32(5):15–18. KUANG Xubing. Development and evaluation of oil base mud plugging agent with nuclei[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 15–18.
[14] 王伟,赵春花,罗健生,等. 抗高温油基钻井液封堵剂PF-MOSHIELD的研制与应用[J]. 钻井液与完井液,2019,36(2):153–159. doi: 10.3969/j.issn.1001-5620.2019.02.004 WANG Wei, ZHAO Chunhua, LUO Jiansheng, et al. Development and application of the high temperature plugging agent PF-MOSHIELD for oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 153–159. doi: 10.3969/j.issn.1001-5620.2019.02.004
[15] 邹娟,杨迅,尹宏,等. 九龙山—剑阁地区长兴组、飞仙关组礁、滩储层特征及控制因素研究[J]. 天然气勘探与开发,2014,37(4):1–6. doi: 10.3969/j.issn.1673-3177.2014.04.001 ZOU Juan, YANG Xun, YIN Hong, et al. Characteristics of bioreef and shoal reservoirs in Changxing and Feixianguan formations of Jiulongshan-Jiange area and their controlling factors[J]. Natural Gas Exploration and Development, 2014, 37(4): 1–6. doi: 10.3969/j.issn.1673-3177.2014.04.001
[16] 文龙,李亚,易海永,等. 四川盆地二叠系火山岩岩相与储层特征[J]. 天然气工业,2019,39(2):17–27. doi: 10.3787/j.issn.1000-0976.2019.02.003 WEN Long, LI Ya, YI Haiyong, et al. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(2): 17–27. doi: 10.3787/j.issn.1000-0976.2019.02.003
[17] 王欣欣.川西北中二叠统栖霞组、茅口组碳酸盐岩储层沉积学[D].成都: 成都理工大学, 2017. WANG Xinxin. Sedimentological research on the carbonate reservoir of Chihsia and Maokou formation in Northwest Sichuan[D]. Chengdu: Chengdu University of Technology, 2017.
[18] 罗静,胡红,朱遂珲,等. 川西北地区下二叠统茅口组储层特征[J]. 海相油气地质,2013,18(3):39–47. doi: 10.3969/j.issn.1672-9854.2013.03.005 LUO Jing, HU Hong, ZHU Suihui, et al. Characteristics of lower Permain Maokou reservoir in northwest of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2013, 18(3): 39–47. doi: 10.3969/j.issn.1672-9854.2013.03.005
[19] HANDS N, KOWBEL K, MAIKRANZ S. Drilling-in fluid reduces formation damage and increase production rates[J]. Oil & Gas Journal, 1998, 96(28): 65–68.
[20] 孙其诚,金峰. 颗粒物质的多尺度结构及其研究框架[J]. 物理,2009,38(4):225–232. doi: 10.3321/j.issn:0379-4148.2009.04.002 SUN Qicheng, JIN Feng. The multiscale structure of granular matter and its mechanics[J]. Physics, 2009, 38(4): 225–232. doi: 10.3321/j.issn:0379-4148.2009.04.002
[21] 孙其诚,王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报,2008,57(8):4667–4674. doi: 10.3321/j.issn:1000-3290.2008.08.007 SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667–4674. doi: 10.3321/j.issn:1000-3290.2008.08.007
[22] 陈平.颗粒介质压缩和剪切的可视化试验与分析[D].广州: 华南理工大学, 2014. CHEN Ping. Compression and shear of the visualization experiment and analysis in granular media[D]. Guangzhou: South China University of Technology, 2014.
-
期刊类型引用(5)
1. 吕端川,汪如军,王超,朱正俊,王开宇,代梦莹,李绍华,宋金鹏. 基于碎屑岩储层孔喉特征的油水渗流微观解释——以桑塔木油田三叠系储层为例. 非常规油气. 2024(05): 106-113 . 百度学术
2. Hongmin Yu,Youqi Wang,Li Zhang,Qingxin Zhang,Zhenhai Guo,Benzhe Wang,Tao Sun. Remaining oil distribution characteristics in an oil reservoir with ultra-high water-cut. Energy Geoscience. 2024(01): 223-227 . 必应学术
3. 何逸凡,陈建波,马铨峥,梁潇,张吉磊. 基于动态残余油饱和度表征的特高含水期油田数值模拟. 中国海上油气. 2022(03): 105-111 . 百度学术
4. 李金宜,罗宪波,刘英宪,刘宗宾,冯海潮,陈科. LD油田高倍数水驱油效率实验研究. 石油化工高等学校学报. 2021(06): 42-49 . 百度学术
5. 李琳琳,廉培庆,刘彦锋. 基于网格过水倍数提高油藏历史拟合精度的方法. 中国科技论文. 2018(21): 2482-2485 . 百度学术
其他类型引用(4)