塔里木博孜区块超深井自动垂直钻井难点与技术对策

滕学清, 刘洪涛, 李宁, 王天博, 汝大军, 董仁

滕学清, 刘洪涛, 李宁, 王天博, 汝大军, 董仁. 塔里木博孜区块超深井自动垂直钻井难点与技术对策[J]. 石油钻探技术, 2021, 49(1): 11-15. DOI: 10.11911/syztjs.2020113
引用本文: 滕学清, 刘洪涛, 李宁, 王天博, 汝大军, 董仁. 塔里木博孜区块超深井自动垂直钻井难点与技术对策[J]. 石油钻探技术, 2021, 49(1): 11-15. DOI: 10.11911/syztjs.2020113
TENG Xueqing, LIU Hongtao, LI Ning, WANG Tianbo, RU Dajun, DONG Ren. Difficulties and Technical Countermeasures for Automatic Vertical Drilling in Ultra-Deep Wells in the Bozi Block of the Tarim Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 11-15. DOI: 10.11911/syztjs.2020113
Citation: TENG Xueqing, LIU Hongtao, LI Ning, WANG Tianbo, RU Dajun, DONG Ren. Difficulties and Technical Countermeasures for Automatic Vertical Drilling in Ultra-Deep Wells in the Bozi Block of the Tarim Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 11-15. DOI: 10.11911/syztjs.2020113

塔里木博孜区块超深井自动垂直钻井难点与技术对策

基金项目: 中国石油天然气股份有限公司重大科技专项“塔里木盆地大油气田增储上产关键技术研究与应用”(编号:2018E-1808)、中国石油集团渤海钻探工程有限公司重大研发项目“BH-VDT4000垂直钻井系统优化改进及国产化研究”(编号:2019ZD01K)联合资助
详细信息
    作者简介:

    滕学清(1965—),男,山东青岛人,1989年毕业于石油大学(华东)钻井工程专业,2017年获中国石油大学(北京)油气井工程专业博士学位,教授级高级工程师,主要从事钻井工程管理工作。E-mail:huangfeng02@cnpc.com.cn

  • 中图分类号: TE242

Difficulties and Technical Countermeasures for Automatic Vertical Drilling in Ultra-Deep Wells in the Bozi Block of the Tarim Basin

  • 摘要: 塔里木盆地博孜区块属于典型的山前高陡构造,地层倾角大、自然造斜能力强、防斜打直难,采用常规的防斜打直技术难以保证井斜控制效果。为此,分析了自动垂直钻井技术在博孜区块超深井的应用难点,针对博孜区块上部砾岩地层的井下钻具振动大、防斜打直难等情况,开展了减振优化、超深井信号传输和防斜打直工艺优化等方面的技术研究。BZ1501井一开198~417及565~1 000 m井段应用了自动垂直钻井系统,两趟钻累计工作循环时间281 h,平均机械钻速2.43 m/h,井斜角0.2°,与该井应用常规钟摆钻具组合及BZ18井应用自动垂直钻井系统相比,工作寿命长,机械钻速快,井斜控制效果好。现场应用表明,超深井防斜打直钻井技术在塔里木博孜区块的钻井提速效果较好,可以在该区块推广应用。
    Abstract: The Bozi Block of the Tarim Basin belongs to a typical piedmont high steep structure that has a large dip angle and strong natural deviation capacity, which is difficult for deviation-prevention straight drilling. It is hard to ensure the hole deviation control effect by using conventional deviation-prevention straight drilling technology. This paper analyzes difficulties in the application of automatic vertical drilling technology in ultra deep wells of the Bozi Block. In view of the strong downhole vibration and the difficulty in deviation prevention during straight drilling in the upper conglomerate formation of Bozi Block, research on deviation-prevention technology was carried out on a number of different aspects. They included damping optimization, ultra deep well signal transmission, the optimization of deviation-prevention straight drilling process, etc. The automatic vertical drilling system was applied in the spud in sections of 198–417 m and 565–1 000 m in Well BZ1501. The cumulative working time of two trips was 281 h, the average ROP was 2.43 m/h, and the hole deviation was 0.2°. Compared with the conventional pendulum drilling string used in this well and the automatic vertical drilling system in Well BZ18, the system had the advantages of long service life, high ROP and good deviation control effect. The field application demonstrated that the deviation-prevention straight drilling technology could be successfully implemented for ROP enhancement in the ultra deep wells of the Bozi Block in the Tarim Basin, and its application could be popularized in the block.
  • 图  1   电路板减振优化

    Figure  1.   Damping optimization of circuit board

    图  2   正脉冲发生器控制阀的结构

    Figure  2.   Structural diagram of positive pulse generator control valve

    表  1   BH-VDT5000垂直钻井系统应用对比

    Table  1   Application Comparison of BH-VDT5000 vertical drilling system

    井号井眼直径/mm地层岩性钻压/kN累计进尺/m下钻次数系统故障次数平均机械钻速/(m·h−1
    BZ1501444.5Q、N2k砾岩120~180654.00202.43
    BZ18444.5Q、N2k砾岩160~220812.00951.44
    下载: 导出CSV
  • [1] 王闻涛,王小通,杨晓勇,等. 全旋转推靠式自动垂直钻井工具现场试验分析[J]. 石油机械,2015,43(9):24–27.

    WANG Wentao, WANG Xiaotong, YANG Xiaoyong, et al. Field test of full-rotation backup-type automatic vertical drilling tool[J]. China Petroleum Machinery, 2015, 43(9): 24–27.

    [2] 汝大军,张建庚,周胜鹏,等. BH-VDT5000垂直钻井系统在克深203井的应用[J]. 石油钻采工艺,2012,34(4):1–3. doi: 10.3969/j.issn.1000-7393.2012.04.001

    RU Dajun, ZHANG Jiangeng, ZHOU Shengpeng, et al. Application of the vertical drilling system BH-VDT5000 on Well Keshen 203[J]. Oil Drilling & Production Technology, 2012, 34(4): 1–3. doi: 10.3969/j.issn.1000-7393.2012.04.001

    [3] 刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术,2013,41(5):56–61. doi: 10.3969/j.issn.1001-0890.2013.05.011

    LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2013, 41(5): 56–61. doi: 10.3969/j.issn.1001-0890.2013.05.011

    [4] 杨春旭,韩来聚,步玉环,等. 现代垂直钻井技术的新进展及发展方向[J]. 石油钻探技术,2007,35(1):16–19. doi: 10.3969/j.issn.1001-0890.2007.01.004

    YANG Chunxu, HAN Laiju, BU Yuhuan, et al. New development and future direction of modern vertical drilling technology[J]. Petroleum Drilling Techniques, 2007, 35(1): 16–19. doi: 10.3969/j.issn.1001-0890.2007.01.004

    [5] 李超,窦亮彬,李振兴,等. 青西油田深井钻井提速技术与应用[J]. 断块油气田,2018,25(3):376–380.

    LI Chao, DOU Liangbin, LI Zhenxing, et al. Drilling rate improvement technology for deep wells and its application in Qingxi Oilfield[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 376–380.

    [6] 王攀, 刘小刚, 刘杰, 等. 垂直导向工具及高性能马达在渤海中深层钻进提速提效中的应用[J]. 石油钻采工艺, 2018, 40(增刊1): 118–120.

    WANG Pan, LIU Xiaogang, LIU Jie, et al. Application of vertical-guide BHA and high-performance motor to the ROP and efficiency improvement in middle and deep strata of the Bohai Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(supplement1): 118–120.

    [7] 蒋金宝,陈养龙,倪红坚. UPC-VDS垂直钻井系统在顺南地区的应用[J]. 断块油气田,2014,21(6):790–793.

    JIANG Jinbao, CHEN Yanglong, NI Hongjian. Application of UPC-VDS vertical drilling system in Shunnan Area[J]. Fault-Block Oil & Gas Field, 2014, 21(6): 790–793.

    [8] 王学龙,何选蓬,刘先锋,等. 塔里木克深9气田复杂超深井钻井关键技术[J]. 石油钻探技术,2020,48(1):15–20. doi: 10.11911/syztjs.2020028

    WANG Xuelong, HE Xuanpeng, LIU Xianfeng, et al. Key drilling technologies for complex ultra-deep wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15–20. doi: 10.11911/syztjs.2020028

    [9] 柴麟,张凯,刘宝林,等. 自动垂直钻井工具分类及发展现状[J]. 石械机械,2020,48(1):1–11.

    CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1–11.

    [10] 王建华,闫丽丽,谢胜,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33. doi: 10.11911/syztjs.2020007

    WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33. doi: 10.11911/syztjs.2020007

    [11] 郭贤伟,汝大军,王海岩,等. BH-VDT垂直钻井工具异常脉冲信号分析研究[J]. 石油钻探技术,2018,46(3):59–64.

    GUO Xianwei, RU Dajun, WANG Haiyan, et al. Cause analysis on abnormal pulse signals of BH-VDT vertical drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(3): 59–64.

    [12] 刘勤志,李兴杰,张国田,等. 水力加压器的研制与现场应用[J]. 石油机械,2013,41(1):20–23. doi: 10.3969/j.issn.1001-4578.2013.01.006

    LIU Qinzhi, LI Xingjie, ZHANG Guotian, et al. Development and field application of hydraulic thruster[J]. China Petroleum Machinery, 2013, 41(1): 20–23. doi: 10.3969/j.issn.1001-4578.2013.01.006

    [13] 罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037

    LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037

    [14] 许朝辉,王智明,姜天杰. 钻井液正脉冲器原理研究[J]. 石油矿场机械,2011,40(7):28–30. doi: 10.3969/j.issn.1001-3482.2011.07.008

    XU Zhaohui, WANG Zhiming, JIANG Tianjie. Study on work principle of the positive drilling fluid pulser[J]. Oil Field Equipment, 2011, 40(7): 28–30. doi: 10.3969/j.issn.1001-3482.2011.07.008

    [15] 廖琪梅,李安宗,屈景辉,等. 随钻测井钻井液脉冲信号基线漂移的矫正[J]. 石油钻采工艺,2008,30(4):41–43.

    LIAO Qimei, LI Anzong, QU Jinghui, et al. Mud signal baseline drift rectification in measurement while drilling[J]. Oil Drilling & Production Technology, 2008, 30(4): 41–43.

    [16] 刘伟,任凌云,刘洪亮. 钻井液脉冲信号传输影响因素分析[J]. 石油钻探技术,2010,38(1):101–103. doi: 10.3969/j.issn.1001-0890.2010.01.025

    LIU Wei, REN Lingyun, LIU Hongliang. Factors affecting mud pulse signal transmission[J]. Petroleum Drilling Techniques, 2010, 38(1): 101–103. doi: 10.3969/j.issn.1001-0890.2010.01.025

  • 期刊类型引用(10)

    1. 胜亚楠. 基于井下参数测量的钻柱运动特征及异常状态分析方法. 石油地质与工程. 2024(02): 108-111+126 . 百度学术
    2. 肖立志,罗嗣慧,龙志豪. 井场核磁共振技术及其应用的发展历程与展望. 石油钻探技术. 2023(04): 140-148 . 本站查看
    3. 朱柏宇,陈恭洋,毛敏,程乐利,杨毅,袁胜斌. 录井基础实验平台建设与应用. 录井工程. 2022(01): 1-10 . 百度学术
    4. 韩忠勤. 浅议地质录井技术在煤层气地质勘探中的运用. 冶金管理. 2021(03): 87-88 . 百度学术
    5. 韩忠勤. 数字测井技术在煤田地质勘探中的应用分析. 当代化工研究. 2021(10): 87-88 . 百度学术
    6. 张吉亮. 浅谈煤层气勘探井录井技术方法. 地质装备. 2020(03): 31-32+21 . 百度学术
    7. 刘开绪,吴春梅,马骏驰,郝健,王冰茜. 综合录井仪电导率传感器现场检定装置设计. 仪表技术与传感器. 2020(06): 50-54 . 百度学术
    8. 杨志升. 石油地质与录井的相互影响与协调. 中国石油和化工标准与质量. 2019(06): 116-117 . 百度学术
    9. 王磊,万亚旗. 科威特市场录井装备及高端技术服务发展思考. 录井工程. 2019(04): 102-104+111+149-150 . 百度学术
    10. 张新华,佘明军,王舒,夏杰. 激光技术在录井工程中的应用进展及展望. 石油钻探技术. 2018(06): 111-117 . 本站查看

    其他类型引用(0)

图(2)  /  表(1)
计量
  • 文章访问数:  949
  • HTML全文浏览量:  248
  • PDF下载量:  180
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-04-11
  • 修回日期:  2020-09-24
  • 网络出版日期:  2020-10-18
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回