Cementing Technology Applied in the Parahuacu Oilfield of Ecuador
-
摘要: 厄瓜多尔Parahuacu油田固井时,二界面易发生边底水窜,水泥浆滤液及固相易侵入储层孔喉,采用常规密度水泥浆易发生漏失。针对这些问题,通过模拟冲洗试验,研制了酸性冲洗液、暂堵型隔离液和界面胶结增强剂,配成了多效固井前置液;通过选用空心玻璃微珠、确定液固比设计窗口、控制滤失量和增强防水窜性能,研制出一种防水窜胶乳低密度水泥浆。室内试验结果表明,多效固井前置液能清除井壁95.0%的结构性滤饼,使储层渗透率恢复率超过90.0%,水泥界面胶结强度提高5倍以上;防水窜胶乳水泥浆密度1.74 kg/L,浆体性能稳定,API滤失量不大于20 mL,静胶凝强度过渡时间短于10 min。由上述前置液、水泥浆和相关配套技术措施(如扶正器加放措施、注替方案设计)形成的固井技术,在Parahuacu油田5口井进行了应用,套管居中度达到85.8%,水泥浆环空顶替效率超过95.0%,储层区域未发生水泥浆漏失和边底水窜,固井质量优良。研究结果表明,Parahuacu油田固井技术现场应用效果显著,能解决该油田油层固井中存在的问题。Abstract: When cementing a well in the Parahuacu oilfield of Ecuador, edge-bottom-water channeling is very likely to occur in the second interface in which cement slurry filtrate and solid particles easily intrude into the reservoir pore throat, and cement slurry with conventional density may leak into the reservoir. To solve those problems, an acidic flush fluid, a temporary plugging spacer and an interfacial cementing enhancer were developed through simulated flushing tests. Keeping those factors in mind, a multi-effect cementing pad fluid was prepared with them. A low-density cement slurry containing anti-channeling latex was developed with a micro hollow glass ball while considering the liquid-solid ratio, fluid loss control and anti-channeling performance. Indoor testing results show that by using the multi-effect cementing pad fluid, 95.0% structural mud cake on the sidewall was removed, the permeability recovery of the reservoir reached over 90.0%, the interfacial cementing strength increased more than 5 times. The cement slurry with anti-channeling latex has a density of 1.74 kg/L, its performance is stable, API fluid loss does not exceed 20 mL and static gel strength transition time is less than 10 min. The newly developed cementing technology, including the above-mentioned pad fluid, cement slurry and relevant supporting technical measures (such as centralizer placement, displacement scheme design), was then applied to 5 wells in Parahuacu oilfield. In the field application, casing centralization was up to 85.8%, annulus displacement efficiency of cement slurry exceeded 95.0%, no leakage of cement slurry or edge-bottom-water channeling was found in the reservoir. The new cementing technology in the Parahuacu oilfield has achieved significant effect and can solve existing problems in reservoir cementing.
-
-
表 1 不同悬浮剂溶液的流变性能
Table 1 Rheological performance of different suspending agents
悬浮剂
溶液六速旋转黏度计读数 流性
指数n稠度系数/
(Pa·sn)ϕ600 ϕ300 ϕ200 ϕ100 ϕ6 ϕ3 G404SP 21 12 9 5 2 1 0.807 0.037 XC-HV 33 21 15 10 1 1 0.652 0.172 BCS-010L 32 21 15 12 2 1 0.608 0.227 表 2 碳酸钙粒径分布情况统计结果
Table 2 Statistics of size distribution of calcium carbonate particles
碳酸钙 d10/μm d50/μm d90/μm 酸蚀率,% 200目碳酸钙 6 37 73 98.6 325目碳酸钙 5 24 45 99.4 注:d10,d50和d90为特定粒径,粒径小于它们的颗粒分别占总颗粒的10%、50%和90%。 表 3 ULTRA SS-5L加量对界面胶结强度的影响
Table 3 Effect of different adding amounts of ULTRA SS-5L on interfacial cementing strength
ULTRA SS-5L加量,% 界面胶结强度/MPa 1 d 3 d 7 d 14 d 0 0.3 0.3 0.4 0.5 2.5 1.2 1.4 1.6 1.7 5.0 1.7 1.8 2.0 2.1 7.5 2.2 2.3 2.4 2.5 10.0 2.3 2.4 2.5 2.6 表 4 CA-13L加量对水泥浆胶凝强度的影响
Table 4 Effect of different adding amounts of CA-13L on gel strength of cement slurry
CA-13L加量,% 胶凝强度/Pa 87 ℃,10 s 87 ℃,10 min 0 2.2 7.9 2 5.7 32.5 4 7.6 46.9 表 5 PRH-X井ϕ177.8 mm尾管固井流体注替方案
Table 5 Fluid displacement scheme for ϕ177.8 mm liner cementing in Well PRH-X
序号 名称 体积/m3 排量/
(m3·min–1)时间/
min1 暂堵型隔离液 4.77 0.954 5.0 2 普通冲洗液 1.59 0.636 2.5 3 酸性冲洗液 3.18 0.795 4.0 4 普通冲洗液 1.59 0.636 2.5 5 暂堵型隔离液 4.77 0.954 5.0 6 普通冲洗液 1.59 0.636 2.5 7 酸性冲洗液 4.77 0.795 6.0 8 界面胶结增强剂 3.98 0.795 5.0 9 清水 1.59 0.636 2.5 10 防水窜胶乳低密度水泥领浆 2.23 0.795 2.8 11 防水窜胶乳低密度水泥尾浆 5.25 0.795 6.5 12 清水替量 17.50 1.113 15.7 13 钻井液替量 15.90 0.954 16.7 14 钻井液替量 6.36 0.477 13.3 15 钻井液替量 1.75 0.397 4.4 -
[1] 赵峰,唐洪明,孟英峰,等. 保护高孔高渗储层的钻井完井液体系[J]. 钻井液与完井液,2008,25(1):9–11. doi: 10.3969/j.issn.1001-5620.2008.01.004 ZHAO Feng, TANG Hongming, MENG Yingfeng, et al. Researches on drilling and completion fluids protecting high porosity and high permeability reservoirs[J]. Drilling Fluid & Completion Fluid, 2008, 25(1): 9–11. doi: 10.3969/j.issn.1001-5620.2008.01.004
[2] 谭文礼,王翀,徐玲. BCS隔离液室内研究[J]. 石油天然气学报,2006,28(1):81–83. doi: 10.3969/j.issn.1000-9752.2006.01.026 TAN Wenli, WANG Chong, XU Ling. BCS isolation fluid laboratory research[J]. Journal of Oil and Gas Technology, 2006, 28(1): 81–83. doi: 10.3969/j.issn.1000-9752.2006.01.026
[3] 孙明波,侯万国,孙德军,等. 钾离子稳定井壁作用机理研究[J]. 钻井液与完井液,2005,22(5):7–9. SUN Mingbo, HOU Wanguo, SUN Dejun, et al. Mechanism study on the potassium ion stabilizing wellbore[J]. Drilling Fluid & Completion Fluid, 2005, 22(5): 7–9.
[4] 张绍俊,张晓兵,徐三峰,等. 塔里木油田碎屑岩固井水泥浆储层损害实验研究[J]. 钻采工艺,2018,41(1):19–21. doi: 10.3969/J.ISSN.1006-768X.2018.01.06 ZHANG Shaojun, ZHANG Xiaobing, XU Sanfeng, et al. Experimental study on formation damage in clastic rock reservoirs in Tarim Oilfield caused by cementing slurry[J]. Drilling & Production Technology, 2018, 41(1): 19–21. doi: 10.3969/J.ISSN.1006-768X.2018.01.06
[5] 马二龙,都诚,刘亦凡,等. 煤层气水平井聚合物钻井液对煤层损害试验研究[J]. 长江大学学报(自然科学版),2019,16(12):54–57. MA Erlong, DU Cheng, LIU Yifan, et al. Testing study on damage of polymer drilling fluid to coalbed methane horizontal well[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(12): 54–57.
[6] 姜涛. 表面活性剂型可加重固井前置液作用机理及应用[J]. 钻井液与完井液,2018,35(1):83–88. doi: 10.3969/j.issn.1001-5620.2018.01.016 JIANG Tao. Study and application of mechanisms weightable surfactant treated preflush for well cementing[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 83–88. doi: 10.3969/j.issn.1001-5620.2018.01.016
[7] 魏裕森,韦红术,张俊斌,等. 碳酸钙粒径匹配对储层保护效果的影响研究[J]. 长江大学学报(自然科学版),2015,12(14):51–54. WEI Yusen, WEI Hongshu, ZHANG Junbin, et al. Study on the influence of calcium carbonate particle size matching on reservoir protection effect[J]. Journal of Yangtze University (Natural Science Edition), 2015, 12(14): 51–54.
[8] 罗向东,罗平亚. 屏蔽式暂堵技术在储层保护中的应用研究[J]. 钻井液与完井液,1992,9(2):19–27. LUO Xiangdong, LUO Pingya. Application of shielded temporary blocking technology in reservoir protection[J]. Drilling Fluid & Completion Fluid, 1992, 9(2): 19–27.
[9] 滕兆键, 邢秀萍, 常燕. 空心玻璃微珠低密度水泥浆的初步研究[J]. 钻井液与完井液, 2011, 28(增刊1): 23-25. TENG Zhaojian, XING Xiuping, CHANG Yan. A preliminary study of hollow glass microsphere low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2011, 28(supplement 1): 23-25.
[10] 宋本岭,张明昌,牟忠信,等. 水泥浆滤液对油气层的损害分析及保护技术[J]. 石油钻采工艺,2005,27(1):27–28. doi: 10.3969/j.issn.1000-7393.2005.01.008 SONG Benling, ZHANG Mingchang, MOU Zhongxin, et al. Hydrocarbon reservoir damage and protective technology of slurry filtrate[J]. Oil Drilling & Production Technology, 2005, 27(1): 27–28. doi: 10.3969/j.issn.1000-7393.2005.01.008
[11] 邹建龙,屈建省,吕光明,等. 新型固井降失水剂BXF-200L的研制与应用[J]. 钻井液与完井液,2005,22(2):20–23. doi: 10.3969/j.issn.1001-5620.2005.02.006 ZOU Jianlong, QU Jiansheng, LYU Guangming, et al. A novel fluid loss additive BXF-200L for oilfield cement and its application[J]. Drilling Fluid & Completion Fluid, 2005, 22(2): 20–23. doi: 10.3969/j.issn.1001-5620.2005.02.006
[12] 刘钰龙. 触变早凝膨胀水泥浆体系在厄瓜多尔TAMBOCOCHA区块尾管固井中的应用[J]. 钻井液与完井液,2019,36(6):754–758. LIU Yulong. Application of thixotropic early-setting expanding cement slurry in cementing liner string in block TAMBOCOCHA, Ecuador[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 754–758.
[13] 靳建洲,孙富全,侯薇,等. 胶乳水泥浆体系研究与应用[J]. 钻井液与完井液,2006,23(2):37–39, 46. doi: 10.3969/j.issn.1001-5620.2006.02.011 JIN Jianzhou, SUN Fuquan, HOU Wei, et al. Study and application of latex cement slurry system[J]. Drilling Fluid & Completion Fluid, 2006, 23(2): 37–39, 46. doi: 10.3969/j.issn.1001-5620.2006.02.011
[14] 韦庭从,郭小阳,程小伟,等. 卡拉赞巴斯油田浅层调整井防窜固井技术[J]. 石油钻采工艺,2015,37(5):49–53. WEI Tingcong, GUO Xiaoyang, CHENG Xiaowei, et al. Anti-channeling cementing technology for shallow adjustment wells in Karazhanbas Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(5): 49–53.
[15] 卢海川,赵岳,宋伟宾,等. 新型固井用防水窜材料的研究与性能评价[J]. 钻井液与完井液,2017,34(4):75–79, 84. doi: 10.3969/j.issn.1001-5620.2017.04.0014 LU Haichuan, ZHAO Yue, SONG Weibin, et al. Study and evaluation of a new anti-water channeling material for well cementing[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 75–79, 84. doi: 10.3969/j.issn.1001-5620.2017.04.0014
-
期刊类型引用(8)
1. 闫玉,黄晶,贾千千,彭莎,朱维奇,王超. 随钻测量仪器中正脉冲发生器旋转阀控制模拟研究. 阀门. 2025(03): 299-304 . 百度学术
2. 伊明,戴勇,杨焕强,南亚东,冀梦佳,梅云涛. 负压力窗口控压下套管井筒压力控制技术. 石油钻探技术. 2024(01): 17-25 . 本站查看
3. 张智,向世林,杜威,张万栋,张超,赵苑瑾,杨昆. 海上超高温高压钻井开停泵对瞬态波动压力的影响. 水动力学研究与进展A辑. 2023(02): 293-302 . 百度学术
4. 左凯,牛贵峰,王川,刘静. 平台扰动下的无隔水管钻井井底压力影响研究. 石油机械. 2022(06): 58-64 . 百度学术
5. 刘占魁,田林海,吴波,段文博,吴家坤,温春明. 沙湾凹陷西斜坡砂砾岩地层井壁失稳机理及复杂处理. 西部探矿工程. 2021(06): 51-53 . 百度学术
6. 王江帅,李军,柳贡慧,罗晓坤. 气侵条件下新型双梯度钻井环空出口流量变化规律研究. 石油钻探技术. 2020(04): 43-49 . 本站查看
7. 王江帅,李军,任美鹏,柳贡慧,张更,张锐尧. 控压钻井条件下漏层位置判别新方法. 石油机械. 2020(09): 15-19 . 百度学术
8. 巨然,管志川,黄熠,罗鸣,李文拓,邓文彪. 南海莺–琼盆地复杂地层套管–井眼间隙优化. 石油钻探技术. 2019(01): 32-36 . 本站查看
其他类型引用(4)