Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin
-
摘要: 为解决四川盆地长宁页岩气区块的套管变形问题,进行了套管变形井施工参数优化分析。基于统计数据,对该区块施工参数优化现状进行了分析;基于三维地震、测井资料及测试数据,建立了该区块H平台裂缝和地应力模型;基于摩尔–库仑临界应力和物质守恒准则,进行了水力压裂数值模拟;根据滑动风险的分类,分析了压裂施工参数和裂缝带激活的关系。由统计分析可知:只采取减液量措施,裂缝带套管变形比例为21.7%;只采取减排量措施,裂缝带套管变形比例为8.1%。通过压裂模拟可知:对于高滑动风险断层,当液量减小20%时,断层激活长度和裂缝激活数分别减小17%和26%,当排量减小20%时,断层激活长度和裂缝激活数分别减小3%和6%;对于中滑动风险断层,当液量减小20%时,断层激活长度和裂缝激活数分别减小22%和30%,当排量减小20%时,断层激活长度和裂缝激活数分别减小43%和60%。研究结果表明,“高滑动风险断层减液量,中滑动风险断层减排量”的压裂施工参数优化建议,可供现场解决套管变形问题时参考。Abstract: In order to solve the problem of casing deformation in the Changning shale gas block in the Sichuan Basin, the construction parameters of wells with deformed casing were analyzed and optimized. The fracture and in-situ stress model of the platform H were established based on 3D seismic data, logging and test data. The hydraulic fracturing numerical simulation was conducted based on the Mohr-Coulomb critical stress and mass conservation law. Based on the classification of slip risk, the relationship between the construction parameters for fracturing and activation of fracture zones was analyzed. The statistics and analysis results showed that when only fluid volume reduction measures were taken, the casing deformation ratio in fractured zones was 21.7%. When only the flowrate reduction measures were taken, the casing deformation ratio was 8.1%. It can been seen from fracturing simulation that, for those faults with high slip risk, when the fluid volume is reduced by 20%, the length of activated fault and the number of activated fractures are decreased by 17% and 26%, respectively. When the flowrate is reduced by 20%, the length of activated fault and the number of activated fractures are reduced by 3% and 6%, respectively. For those faults with medium slip risk, when the fluid volume is reduced by 20%, the length of activated fault and the number of activated fractures are decreased by 22% and 30% respectively. When the flowrate is reduced by 20%, the length of activated fault and the number of activated fractures are decreased by 43% and 60%, respectively. The research results showed a suggestion on construction parameters that reducing fluid volume for high slip risk faults and reducing flowrate for medium slip risk faults. This could provide a reference for solving casing deformation problem on site.
-
-
-
[1] 陈朝伟,石林,项德贵. 长宁—威远页岩气示范区套管变形机理及对策[J]. 天然气工业,2016,36(11):70–75. doi: 10.3787/j.issn.1000-0976.2016.11.009 CHEN Zhaowei, SHI Lin, XIANG Degui. Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures[J]. Natural Gas Industry, 2016, 36(11): 70–75. doi: 10.3787/j.issn.1000-0976.2016.11.009
[2] 陈朝伟,项德贵,张丰收,等. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略[J]. 石油科学通报,2019,4(4):364–377. CHEN Zhaowei, XIANG Degui, ZHANG Fengshou, et al. Fault slip and casing deformation caused by hydraulic fracturing in Changning- Weiyuan Blocks, Sichuan: mechanism and prevention strategy[J]. Petroleum Science Bulletin, 2019, 4(4): 364–377.
[3] DONG Kai, LIU Naizhen, CHEN Zhaowei, et al. Geomechanical analysis on casing deformation in Longmaxi shale formation[J]. Journal of Petroleum Science and Engineering, 2019, 177: 724–733. doi: 10.1016/j.petrol.2019.02.068
[4] YIN Fei, HAN Lihong, YANG Shangyu, et al. Casing deformation from fracture slip in hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 166: 235–241. doi: 10.1016/j.petrol.2018.03.010
[5] ZHANG Fengshou, YIN Zirui, CHEN Zhaowei, et al. Fault reactivation and induced seismicity during multistage hydraulic fracturing: microseismic analysis and geomechanical modeling[J]. SPE Journal, 2020, 25(2): 692–711. doi: 10.2118/199883-PA
[6] LIU Kui, TALEGHANI A D, GAO Deli. Semianalytical model for fault slippage resulting from partial pressurization[J]. SPE Journal, 2020, 25(3): 1489–1502. doi: 10.2118/199348-PA
[7] XI Yan, LI Jun, ZHA Chunqing, et al. A new investigation on casing shear deformation during multistage fracturing in shale gas wells based on microseism data and calliper surveys[J]. Journal of Petroleum Science and Engineering, 2019, 180: 1034–1045. doi: 10.1016/j.petrol.2019.05.079
[8] MAXWELL S. Microseismic imaging of hydraulic fracturing: improved engineering of unconventional shale reservoirs[M]. Society of Exploration Geophysicists, 2014.
[9] CLADOUHOS T T, MARRETT R. Are fault growth and linkage models consistent with power-law distributions of fault lengths[J]. Journal of Structural Geology, 1996, 18(2/3): 281–293.
[10] YAGHOUBI A. Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. International[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 98–108. doi: 10.1016/j.ijrmms.2019.01.015
[11] 陈朝伟,王鹏飞,项德贵. 基于震源机制关系的长宁—威远区块套管变形分析[J]. 石油钻探技术,2017,45(4):110–114. CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of casing deformation in the Changning-Weiyuan Block based on focal mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110–114.
[12] 郎晓玲,郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版),2013,49(6):964–972. LANG Xiaoling, GUO Zhaojie. Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 964–972.
[13] COTTRELL M G, HARTLEY L J, LIBBY S. Advances in hydromechanical coupling for complex hydraulically fractured unconventional reservoirs[R]. ARMA-2019-0504, 2019.
[14] ODA M, YAMABE T, ISHIZUKA Y, et al. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mechanics and Mining Sciences, 1993, 30(6): 89–112.
[15] COTTRELL M, HOSSEINPOUR H, DERSHOWITZ W. Rapid discrete fracture analysis of hydraulic fracture development in naturally fractured reservoirs[R]. SPE 1582243, 2013.
[16] ROGERS S, ELMO D, DUNPHY R, et al. Understanding hydraulic fracture geometry and interactions in the Horn River Basin through DFN and numerical modeling[R].SPE 137488, 2010.
[17] 马克 D 佐白科.储层地质力学[M].石林, 陈朝伟, 刘玉石, 等, 译.北京: 石油工业出版社, 2011: 90−92. ZOBACK M D. Reservior geomechanics[M]. Translated by SHI Lin, CHEN Zhaowei, LIU Yushi, et al. Beijing: Petroleum Industry Press, 2011: 90−92.
[18] WALSH F R, ZOBACK M D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA[J]. Geology, 2016, 44(12): 991–994. doi: 10.1130/G38275.1
[19] CHEN Zhaowei, FAN Yu, HUANG Rui, et al. Case study: fault slip induced by hydraulic fracturing and risk assessment of casing deformation in the Sichuan Basin [R]. URTEC-198212-MS, 2019.
[20] CHEN Zhaowei, ZHOU Lang, WALSH R, et al. Case study: casing deformation caused by hydraulic fracturing-induced fault slip in the Sichuan Basin[R]. URTEC-2882313-MS, 2018.
-
期刊类型引用(13)
1. 许航,周福建,杨飒飒,李源,朱丽燕,姚二冬. 耐高温可加重酸性交联压裂液的研发与性能评价. 石油科学通报. 2024(03): 503-512 . 百度学术
2. 李建申,黄秋实,燕松兵,刘青,王茂功,董景锋,郑苗. 一种基于物理交联的多功能携砂驱油压裂液体系. 钻井液与完井液. 2024(05): 668-676 . 百度学术
3. 耿学礼,郑晓斌,苏延辉,敬倩,史斌,李建. 沁南区域煤层气水平井瓜尔胶钻井液技术. 石油钻探技术. 2023(01): 34-39 . 本站查看
4. 汤鲁馨,张晓琪,罗炎生,方波,翟文,卢拥军. 四元聚合物溶液及其压裂液流变性能. 油田化学. 2021(02): 235-239+246 . 百度学术
5. 张健,王金意,荆铁亚,李四海,张国祥. 压裂液与煤岩相互作用实验研究. 断块油气田. 2020(01): 131-136 . 百度学术
6. 张志升. 适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系. 大庆石油地质与开发. 2020(01): 169-174 . 百度学术
7. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
8. 张扬,赵永刚,闫永强,王海兵,杨晓影,王强. 页岩储层新型清洁滑溜水压裂液体系. 钻采工艺. 2020(04): 89-92+11 . 百度学术
9. 潘一,夏晨,杨双春,马欣,MUAVMMAD Abubakar Rona,苏占全. 耐高温水基压裂液研究进展. 化工进展. 2019(04): 1913-1920 . 百度学术
10. 吕振虎,邬国栋,郑苗,杨建强,向英杰. 基于溶胀–熟化机理的疏水缔合聚合物速溶压裂液技术. 石油钻探技术. 2019(04): 104-109 . 本站查看
11. 吴琼,曹红燕,黄敏,段宝虹,许鑫科,张亮. 新型低伤害清洁减阻水压裂液体系研究及应用. 钻采工艺. 2019(06): 94-97+6-7 . 百度学术
12. 肖兵,范明福,王延平,郭粉娟,赵莹,党昊. 低摩阻超高温压裂液研究及应用. 断块油气田. 2018(04): 533-536 . 百度学术
13. 杨浩珑,向祖平,李龙,袁迎中. CO_2泡沫双子表面活性剂清洁压裂液研究与试验. 石油钻探技术. 2018(02): 92-97 . 本站查看
其他类型引用(5)