河北博野某地热井结垢位置预测及影响因素分析

梁海军, 郭啸峰, 高涛, 卜宪标, 李华山, 王令宝

梁海军, 郭啸峰, 高涛, 卜宪标, 李华山, 王令宝. 河北博野某地热井结垢位置预测及影响因素分析[J]. 石油钻探技术, 2020, 48(5): 105-110. DOI: 10.11911/syztjs.2020096
引用本文: 梁海军, 郭啸峰, 高涛, 卜宪标, 李华山, 王令宝. 河北博野某地热井结垢位置预测及影响因素分析[J]. 石油钻探技术, 2020, 48(5): 105-110. DOI: 10.11911/syztjs.2020096
LIANG Haijun, GUO Xiaofeng, GAO Tao, BU Xianbiao, LI Huashan, WANG Lingbao. Scaling Spot Prediction and Analysis of Influencing Factors for a Geothermal Well in Boye County, Hebei Province[J]. Petroleum Drilling Techniques, 2020, 48(5): 105-110. DOI: 10.11911/syztjs.2020096
Citation: LIANG Haijun, GUO Xiaofeng, GAO Tao, BU Xianbiao, LI Huashan, WANG Lingbao. Scaling Spot Prediction and Analysis of Influencing Factors for a Geothermal Well in Boye County, Hebei Province[J]. Petroleum Drilling Techniques, 2020, 48(5): 105-110. DOI: 10.11911/syztjs.2020096

河北博野某地热井结垢位置预测及影响因素分析

基金项目: 国家重点研发计划项目“井储防垢除垢关键技术及工艺”(编号:2019YFB1504104)和中国石化集团科技攻关项目“中高温地热水防垢除垢技术研究”(编号:JP18063-2)部分研究内容
详细信息
    作者简介:

    梁海军(1972—),男,山东滨州人,1995年毕业于石油大学(华东)石油工程专业,高级工程师,主要从事地热、干热岩等新能源技术的研发、咨询及规划工作。E-mail:lianghaijun.xxsy@sinopec.com

  • 中图分类号: TK52

Scaling Spot Prediction and Analysis of Influencing Factors for a Geothermal Well in Boye County, Hebei Province

  • 摘要: 地热井开发过程中的碳酸钙结垢严重制约了地热能的可持续开发利用,为了给地热井阻垢技术的应用提供理论依据,对河北博野地热井X井结垢位置进行了数值模拟研究。基于地热井井身结构,利用WELLSIM软件,进行了结垢位置预测和结垢影响因素分析研究。研究结果表明:根据出口流体成分反推得到的井底流体温度为128.0 ℃;地热流体沿井筒上升过程中压力迅速降低,在井下56.10 m处发生闪蒸,其干度、CO2分压随之发生突变;地热井内流体闪蒸位置随CO2质量分数、NaCl质量分数和地热流体流量增大而下移,其中CO2质量分数对地热水闪蒸位置的影响最大。现场防垢时,潜水泵的下入深度或阻垢剂的加注深度均应在闪蒸点56.10 m以下。研究表明,控制井口压力和流量可以调节闪蒸位置,实现地热开采与防垢技术的协同优化。
    Abstract: Calcium carbonate scaling in geothermal wells seriously hinders the sustainable development and utilization of geothermal energy. In order to provide a theoretical basis for the implementation of scale inhibition technology in geothermal wells, the scaling spots of a geothermal well in Boye County of Hebei Province were numerically simulated. Based on the casing program of geothermal wells, the influencing factors and scaling spot depth prediction were studied by using WELLSIM. The results showed that fluid temperature at the bottomhole calculated from the composition of outlet fluids was 128.0 ℃. The geothermal fluid pressure drops rapidly as it rose along the wellbore. A flash occurred at the depth of 56.10 m, the dryness and CO2 partial pressure sharply changed accordingly. The flash depth of geothermal fluids migrated downwards with the increase of CO2 mass fraction, NaCl mass fraction and geothermal fluid flow rate, in which CO2 mass fraction played the decisive role. In field scale prevention practice, the setting depth of the submersible pump and the injection depth of the scale inhibitor should be below the flash depth of 56.1 m. The research shows that the flash depth can be adjusted by controlling the wellhead pressure and flow rate to accomplish the collaborative optimization of geothermal exploitation and scale prevention.
  • 图  1   地热X井井身结构

    Figure  1.   Casing program of a geothermal well

    图  2   全井段温度和压力的变化趋势

    Figure  2.   Variation trends of temperature and pressure along the wellbore

    图  3   全井段地热流体干度和CO2分压的变化规律

    Figure  3.   Variations laws of dryness and CO2 partial pressure along the wellbore

    图  4   地热流体流型的变化规律

    Figure  4.   Variation law of geothermal fluids flow pattern

    图  5   井深100.00 m以浅地热流体温度和压力的变化规律

    Figure  5.   Variation laws of temperature and pressure of of geothermal fluids within 100 m below the wellhead

    图  6   闪蒸位置以上重力原因造成的压力梯度变化趋势

    Figure  6.   Variation trend of pressure drop caused by gravity above flashing depth

    图  7   井深100.00 m以浅地热流体干度和CO2分压的变化

    Figure  7.   Variations of dryness and CO2 partial pressure of geothermal fluids within 100 m below the wellhead

    图  8   井口CO2质量分数对闪蒸位置和闪蒸压力的影响规律

    Figure  8.   Influence of CO2 mass fraction at wellhead on flashing depth and flashing pressure

    图  9   井口NaCl质量分数对闪蒸位置的影响规律

    Figure  9.   Influence of NaCl mass fraction at wellhead on flashing depth

    图  10   井口地热流体流量对闪蒸位置的影响规律

    Figure  10.   Influence law of geothermal fluids flow rate at wellhead on flashing depth

  • [1] 秦祥熙,张萌,叶佳,等. 河北沧县台拱带中、低温地热资源ORC发电与综合梯级利用[J]. 地球学报, 2019, 40(2): 307–313. doi: 10.3975/cagsb.2019.011101

    QIN Xiangxi, ZHANG Meng, YE Jia, et al. ORC power generation and integrated cascade utilization of medium-low temperature geothermal resources in Cangxian Bulge Region, Hebei Province[J]. Acta Geoscientica Sinica, 2019, 40(2): 307–313. doi: 10.3975/cagsb.2019.011101

    [2] 陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status anddevelopment recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110

    [3] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock(HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.

    [4] 付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526–540.

    FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.

    [5] 史猛, 张杰, 殷焘, 等.胶东半岛中低温对流型地热资源水化学特征分析[J].地质学报, 2019, 93(增刊1): 138-148.

    SHI Meng, ZHANG Jie, YIN Tao, et al. Hydrochemistry characteristicanalysis of low-medium temperature convective geothermal resources in Jiaodong Peninsula[J]. Acta Geologica Sinica, 2019, 93(supplement 1): 138-148.

    [6]

    ARMENTA M F, MONTES M R, ALCALA L M. Wellbore modeling of production well H-1D using WellSim, Los Humeros geothermal field Mexico[C]//Proceedings of the World Geothermal Congress, April, 2015, Melbourne, Australia.

    [7] 谯开聪. DZK02 地热井结垢原因分析及解决方案探讨[J]. 内蒙古科技与经济, 2017(8): 99, 110.

    QIAO Kaicong. Cause analysis and solution discussion of scaling in DZK02 geothermal well[J]. Inner Mongolia Science Technology & Economy, 2017(8): 99, 110.

    [8] 王延欣,刘世良,边庆玉,等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202–206. doi: 10.3969/j.issn.2095-560X.2015.03.007

    WANG Yanxin, LIU Shiliang, BIAN Qingyu, et al. Scaling analysisof geothermal well from Ganzi and countermeasures for anti-scale[J]. Advances in New & Renewable Energy, 2015, 3(3): 202–206. doi: 10.3969/j.issn.2095-560X.2015.03.007

    [9] 李义曼,庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274–281. doi: 10.3969/j.issn.2095-560X.2018.04.004

    LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New & Renewable Energy, 2018, 6(4): 274–281. doi: 10.3969/j.issn.2095-560X.2018.04.004

    [10]

    LIN C, KUO T, FAN K, et al. Characterization of well skin using buildup test and radon as a tracer[J]. Journal of Petroleum Science and Engineering, 2011, 78(2): 201–207. doi: 10.1016/j.petrol.2011.07.009

    [11]

    REED M J. Thermodynamic calculations of calcium carbonate scaling in geothermal wells, dixie valley geothermal field, U.S.A.[J]. Geothermics, 1989, 18(1/2): 269–277.

    [12]

    PATZAY G, KARMAN F H, POTA G. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary[J]. Geothermics, 2003, 32(4/5/6): 627–638.

    [13]

    LEE Bo-Heng, LIN Cheng-Kuo, CHUANG Chung-Wei, et al. A test of calcium carbonate scale inhibition in Chingshui Geothermal Field, Taiwan[C]//Proceedings World Geothermal Congress, April, 2015, Melbourne, Australia.

    [14]

    RAMOS-CANDELARIA M, CABEL A C Jr, BUNING B C, et al. Calcite inhibition field trials at the Mindanao Geothermal ProductionField (MGPF), Philippines[C]//Proceedings World Geothermal Congress, May, 2000, Kyushu Tohoku, Japan.

    [15]

    ZHAO S M, ZHAO K. Formation mechanism and control techniques of calcium carbonate scale in the Langjiu geothermal field Tibet[C]//Proceeding World Geothermal Congress, April, 2015, Melbourne, Australia.

    [16]

    SONG Junchao, LIU Mingyan, SUN Xiuxiu. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water[J]. Geothermics, 2020, 85: 101766. doi: 10.1016/j.geothermics.2019.101766

    [17]

    LI Yiman, PANG Zhonghe, GALECZKA I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 2020, 87: 101844. doi: 10.1016/j.geothermics.2020.101844

    [18] 韦梅华. 山西省汾渭裂谷带地热水结垢趋势分析[J]. 华北国土资源, 2018(2): 59–62, 68. doi: 10.3969/j.issn.1672-7487.2018.02.027

    WEI Meihua. Analysis of scaling tendency of geothermal water in Fenwei Rift Zone of Shanxi Province[J]. Huabei Land and Resources, 2018(2): 59–62, 68. doi: 10.3969/j.issn.1672-7487.2018.02.027

    [19] 张恒,胡亚召,云智汉,等. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用[J]. 新能源进展, 2016, 4(2): 111–117. doi: 10.3969/j.issn.2095-560X.2016.02.006

    ZHANG Heng, HU Yazhao, YUN Zhihan, et al. Applying hydro-geochemistry simulating technology to study scaling of the high-temperature geothermal well in Kangding County[J]. Advances in New & Renewable Energy, 2016, 4(2): 111–117. doi: 10.3969/j.issn.2095-560X.2016.02.006

    [20] 史杰, 乃尉华, 李明, 等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质, 2018, 45(3): 165–172.

    SHI Jie, NAI Weihua, LI Ming, et al. Hydrogeochemical characteristics of high temperature geothermalfield of the Quman geothermal field in Xinjiang[J]. Hydrogeology and Engineering Geology, 2018, 45(3): 165–172.

    [21]

    HAIZLIP J R, HAKLIDIR F S T. High noncondensible gas liquid dominated geothermal reservoir, Kizildere, Turkey[R]. Geothermal Resources Council Transactions, 2011.

    [22]

    AKIN T, GUNEY A, KARGI H. Modeling of calcite scaling andestimation of gas breakout depth in a geothermal well by using PHREEQC[C]//Proceedings of the 40th Workshop on Geothermal Reservoir Engineering, January 26-28, 2015, Stanford University, California.

    [23]

    ARNORSSON S. Precipitation of calcite from flashed geothermal waters in Iceland[J]. Contributions to Mineralogy and Petrology, 1978, 66(1): 21–28. doi: 10.1007/BF00376082

  • 期刊类型引用(5)

    1. 任向海,李楠,李晶辉,杨志,彭振华,丁雯. 大排量深抽减载抽油泵研制. 重庆科技学院学报(自然科学版). 2024(02): 116-120 . 百度学术
    2. 秦飞,王禧文,丁保东,曹畅,高晨豪,郭继香. 塔河油田稠油开发经济效益评价. 天然气与石油. 2023(04): 144-150 . 百度学术
    3. 刘玉国,杨利萍,彭振华,曹畅,丁保东. 塔河油田抽油机效能提升技术研究与应用. 石油石化节能与计量. 2023(10): 1-5 . 百度学术
    4. 尹丹,罗日蕾. 空心抽油杆杆式电加热技术在高含蜡井的应用. 石油石化节能. 2022(07): 33-36 . 百度学术
    5. 杜坤,王鹏,李杨,蒋海岩,白玉. 塔河油田典型深抽工艺研究. 辽宁石油化工大学学报. 2019(05): 45-52 . 百度学术

    其他类型引用(3)

图(10)
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  265
  • PDF下载量:  84
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-02-18
  • 修回日期:  2020-07-05
  • 网络出版日期:  2020-07-26
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回