Scaling Spot Prediction and Analysis of Influencing Factors for a Geothermal Well in Boye County, Hebei Province
-
摘要: 地热井开发过程中的碳酸钙结垢严重制约了地热能的可持续开发利用,为了给地热井阻垢技术的应用提供理论依据,对河北博野地热井X井结垢位置进行了数值模拟研究。基于地热井井身结构,利用WELLSIM软件,进行了结垢位置预测和结垢影响因素分析研究。研究结果表明:根据出口流体成分反推得到的井底流体温度为128.0 ℃;地热流体沿井筒上升过程中压力迅速降低,在井下56.10 m处发生闪蒸,其干度、CO2分压随之发生突变;地热井内流体闪蒸位置随CO2质量分数、NaCl质量分数和地热流体流量增大而下移,其中CO2质量分数对地热水闪蒸位置的影响最大。现场防垢时,潜水泵的下入深度或阻垢剂的加注深度均应在闪蒸点56.10 m以下。研究表明,控制井口压力和流量可以调节闪蒸位置,实现地热开采与防垢技术的协同优化。Abstract: Calcium carbonate scaling in geothermal wells seriously hinders the sustainable development and utilization of geothermal energy. In order to provide a theoretical basis for the implementation of scale inhibition technology in geothermal wells, the scaling spots of a geothermal well in Boye County of Hebei Province were numerically simulated. Based on the casing program of geothermal wells, the influencing factors and scaling spot depth prediction were studied by using WELLSIM. The results showed that fluid temperature at the bottomhole calculated from the composition of outlet fluids was 128.0 ℃. The geothermal fluid pressure drops rapidly as it rose along the wellbore. A flash occurred at the depth of 56.10 m, the dryness and CO2 partial pressure sharply changed accordingly. The flash depth of geothermal fluids migrated downwards with the increase of CO2 mass fraction, NaCl mass fraction and geothermal fluid flow rate, in which CO2 mass fraction played the decisive role. In field scale prevention practice, the setting depth of the submersible pump and the injection depth of the scale inhibitor should be below the flash depth of 56.1 m. The research shows that the flash depth can be adjusted by controlling the wellhead pressure and flow rate to accomplish the collaborative optimization of geothermal exploitation and scale prevention.
-
Keywords:
- geothermal well /
- calcium carbonate /
- scaling /
- flashing depth /
- antiscale /
- carbon dioxide
-
地下储气库是将长输管道输送的天然气重新注入地下空间而形成的一种人工气田或气藏[1],在天然气供应链中发挥着天然气调峰、安全保供、管网平衡优化等重要作用[2–3]。地下储气库主要有气藏型[4–5]、含水层型[6]、盐穴型[7–8]、油藏型[9]、岩洞及废弃矿井型[10]等类型,其中枯竭气藏型数量最多。例如,中国石化在建的全国最大储气库—文23储气库便是枯竭砂岩气藏型储气库[11],该储气库以沙三段盐膏层为封闭层,以沙四段砂岩为储气层。文23气田经过30余年的开发,已处于枯竭状态,主块地层压力由原始状态的38.6~39.2 MPa降至3.0~4.0 MPa,压力系数由1.30~1.35降至0.10~0.60。而储气库注采气井多为大斜度井,低压易漏[12]、盐膏层段固井质量难以保证[13]是面临的主要钻井难题[14]。因此,储气库建设的关键是,要具有完整的封闭系统,主要包括盖层封闭性、断层封闭性和井筒封闭完整性3方面。与之相关的问题,国内已有学者做了一些研究:孟祥杰等人[15]采取静态评价与动态评价相结合的方法,确定冀中坳陷大5目标含水层构造改建地下储气库的盖层封闭能力良好;马小明等人[16]采用定性与定量相结合的判别方法,确定板南地下储气库的断层具有良好的封闭性;彭平等人[17]从盖层、断层、裂缝、溢出点、储层底板和井筒完整性等方面,建立了完整的储气库封闭性评价体系,并认为克拉2气田改建储气库可行。这些研究主要是从储气库选址的角度进行封闭性评价,没有充分利用前期勘探开发井的钻井井漏、油气显示等资料。储气库的封闭性评价包括钻前选址和钻井完井过程2大环节,录井主要是在注采气井的钻井过程中,充分利用钻井录井资料及前期勘探开发资料,全面评价盖层封闭性、断层及裂缝封闭性,并为井筒封闭完整性提供强有力的技术支持。因此,笔者以文23储气库为例,建立了沙三段盐膏层断缺条件下的盖层识别与评价方法,形成了基于钻井液出口流量曲线变化形态的井漏原因判别模式和断层封闭性评价方法,并建立了在沙三段盐膏层发育和断缺2种条件下钻穿盖层底界5.00~10.00 m卡准中完井深的方法,这些方法构成了枯竭砂岩气藏型储气库录井关键技术。
1. 枯竭砂岩气藏型储气库的录井需求
储气库库址评价与优选是储气库建设面临的首要问题[18–19],储气库体系通常包括地下油气藏、注采气井、观察井、集输系统、压缩机、计量设备、脱水装置以及外输管道[20]。录井是在选定储气库库址后,注采气井钻井过程中的一项石油工程技术。枯竭气藏型储气库建设利用的是油气开发程度较高、地层孔隙压力已大幅度降低的地层,相比于油气勘探开发井,录井的核心任务发生了重大变化,建立地层柱状剖面、发现油气显示、进行地层压力随钻预监测及溢流预警已不再是录井的主要任务。
我国的第一座地下储气库始建于1996年[21],迄今在建和已建成的储气库至少有26座[11–22],但已发表的关于录井的论文仅见1篇,且是研究中完卡层的[13]。文23储气库录井主要包括岩屑录井、元素录井和综合录井,其中综合录井包括钻时录井、气测录井、工程参数及钻井液参数录井3项。可见,储气库录井的主要任务有2项:一是为钻井完井工程服务,二是为储气库密封完整性服务,二者相辅相成。
2. 储气库录井关键技术
储气库录井的技术关键是:1)充分利用注采气井的钻井录井资料及前期的勘探开发资料,准确识别盖层的岩性和厚度,评价盖层封闭的有效性;2)准确发现井漏,判别井漏原因,评价盖层中的断层、裂缝封闭性;3)及时卡准中完井深,为优化井身结构及提高井筒封闭完整性提供技术支撑。其中,盖层、断层及裂缝的封闭性已经在储气库选址阶段进行了论证,因此,录井的作用是在钻井过程中进行更为细致的评价或验证,避免出现不封闭的情况。
2.1 盖层封闭性评价
文23储气库盖层的岩性主要为盐岩、膏岩、泥岩及过渡岩性。通过录井现场识别盖层岩性的主要手段有3种:1)岩屑录井,基于肉眼的观察与描述;2)X射线荧光(XRF)元素录井或X射线衍射(XRD)矿物录井;3)出、入口电导率录井[23]。盐岩的主要成分是NaCl、KCl,盐岩被钻头破碎后,在井筒条件下常常会溶解在钻井液中,通过岩屑录井难以发现,XRF的Na、Cl等元素特征也不明显,只能以出、入口电导率急剧升高作为识别盐膏层的主要特征。对于膏质岩类,岩屑录井能够见到白色的石膏,XRF录井S元素的含量明显高于基值。
用岩屑XRF元素录井中的Cl代表盐岩类,S代表膏岩类,Al代表泥岩类,在盐膏层发育段,三者含量之和(记为
ω(Cl+S+Al) )占元素含量总和(记为Σω(Ei) )的百分数连续10.00 m以上大于25%为有效盖层;在盐膏层欠发育(断缺)段,三者含量之和占元素含量总和的百分数连续25.00 m以上大于20%为有效盖层[24],结果见表1。如储3-6井,沙三段盐膏层断缺,测井解释为不含膏,难以确定该井是否存在盖层,但通过岩屑录井及XRF录井测得的S元素含量得知,2 700.00~2 780.00 m井段具有明显的含膏特征(见图1),2 676.50~2 725.00 m和2 734.00~2 779.00 m井段Cl,S和Al元素含量之和占元素含量总和的百分数均超过20%,表明存在有效盖层。同样沙三段盐膏层断缺的邻井Xw103井,通过录井在沙四段2 756.00~2 991.40 m井段发现51层(总厚度1 33.00 m)有含气显示,通过测井解释沙四段2 754.10~3 030.30 m井段存在82层气层(总厚度189.90 m),表明存在盖层,且具有很好的封闭性。因此,盖层封闭性评价需要将岩性录井(岩屑+XRF)与邻井钻井时的油气显示情况结合起来分析,尤其是在溢出点、断层带附近的井,邻井油气显示等资料是评价盖层封闭性的有力证据。表 1 基于元素录井的文23储气库有效盖层评价标准Table 1. Elemental mud logging-based effective caprock evaluation criteria for Wen 23 Gas Storage盖层特征 ω (Cl+S+Al)/
∑ω(Ei),%有效盖层连续厚度/m 沙三段盐膏层发育 >30 >10.00 沙三段盐膏层断缺 >20 >25.00 2.2 断层封闭性评价
对于枯竭气藏型储气库,通过录井识别断层时主要从3方面判别:1)非工程因素(双泵变单泵、变阀门数)导致的钻井液出口流量、钻井液池液面等工程参数突然降低,指示钻遇断层、张裂缝或不整合面而发生井漏,将发生井漏的层位、深度与井区顶面构造图、油藏剖面图、地层剖面图相结合可进一步做出准确判别;2)气测全烃、甲烷含量突然降低,意味着钻遇断层或裂缝,这是因为钻井液返出量降低或失返,且裂缝中的气体在前期开发过程中更容易被采出;3)特征元素曲线形态重复出现,指示钻遇逆断层,并可根据重复间距计算断层断距。对封闭性有影响的主要是正断层。
2.2.1 井漏原因判别
根据钻井液出口流量曲线的变化形态,可以将井漏原因判别模式分为天然张裂缝、诱导缝、基质渗透性漏失和失返性漏失4种,如图2所示[25]。文23储气库注采井在钻进沙三段盐膏层上部地层、盐间地层和下部地层时井漏较为频繁,由于文23储气库是枯竭气藏型储气库,容易凭感觉将井漏原因归结为地层压力亏空,但其为砂岩储层,孔隙度为8.80%~13.86%,渗透率为0.27~17.10 mD,压力亏空导致的漏失应该为基质渗透性漏失,钻井液出口流量曲线具有先缓慢下降、过了漏失层后再缓慢抬升的形态特征(见图2(c));沙三段盐膏层上部地层和下部地层发生井漏时,其出口流量曲线主要为天然张裂缝模式(见图2(a))或失返性漏失(见图2(d))模式,说明是钻遇张裂缝或断层所致;而且,文23气田开发初期气井钻井过程中也常常发生井漏,储气库注采井与邻井井漏发生的深度具有较好的一致性,且都分布在断层附近。
2.2.2 断层封闭性判别
断层是影响储气库封闭性的重要因素[16]。沙四段气藏是在基岩隆起背景上继承性发育并被断层复杂化的背斜构造。文23气田断层按其级别大小及所起的作用可分为边界断层、分块断层和断块区内部小断层3大类。各级断层的封闭性不一致,边界断层和分块断层封闭性均较好,内部小断层中有少数也具有封闭性。沙三段盐膏层的上部及下部断层,大多没有断穿沙三段盐膏层,对盖层的封闭性没有影响,所以在钻井过程中需要高度重视沙三段盐膏层钻进过程中发生的井漏。如储4–4井,现场描述为“自从转为密度1.42 kg/L的饱和盐水钻井液钻进后,2 040.00 m~2 810.00 m(中完井深)井段,一直存在渗漏现象,下钻到底开泵初期比较严重,最大漏速10 m3/h”,并将漏失原因归结为钻遇“断层、地层交界面”,但出口流量曲线与泵冲有较好的对应关系(见图3(a)),说明曲线形态的变化是由工程因素引起的,而非地层因素引发井漏产生的;储4–4井的邻井W23–1井,于2 766.10~3 017.10 m井段累计采气11.351 46 × 108 m3(见图3(b)),证明其盖层具有良好的封闭性。
2.3 提高井筒完整性
井筒完整性的主要影响因素是盖层及盖层井段的固井质量,而固井质量与井身结构密切相关。文23储气库注采井采用三开井身结构,要求二开钻至沙三段盐膏层底界以深50.00 m。很多井钻穿沙三段盐膏层即进入沙四段砂层,沙四段砂层自上而下分为8个砂层组,其中1—2砂层组物性相对较差,3—8砂层组作为储气库的主要储层,由于二开固井质量不理想[13],钻井工程人员希望二开钻穿盐膏层底界的井段越短越好,最好能控制在5.00 m或10.00 m以内。文23储气库的盖层分为沙三段盐膏层发育与断缺2种类型,从XRF元素特征来看,沙三段盐膏层发育段的盐间地层具有明显的高含S(≥8.0%)、低含Al(≤5.5%)、低含Si(≤14.0%)的特征,而盐下地层则具有相反的特征(见图4)。沙三段盐膏层断缺井段,盐间地层与盐下地层的Si、Al特征并不明显,在刻度相同的情况下,通过S元素含量降低与Si元素含量增高的曲线交叉点,可以有效识别沙三段盐膏层的底界。如储3–6井,其典型特征是S元素含量骤降,在4.00 m范围内从11.16%降至4.97%;而Si元素含量陡升,在4.00 m范围内从9.31%升至16.66%,由此可以确定沙三段盐膏层的底界为2 772.00 m(见图1(b))。因此,无论沙三段盐膏层发育还是断缺,均可在沙三段盐膏层底界以深4.00~10.00 m范围内卡准中完井深,若将岩屑取样间距由2.00 m改为1.00 m,则可进一步缩短钻出沙三段盐膏层底界的距离。
3. 应用实例
文23储气库一期工程部署了66口注采气井,在取全取准录井资料的同时,全面评价了盖层封闭及断层、裂缝封闭的有效性,并卡准盐膏层底界,为提高井筒封闭完整性提供了有力的技术支撑。如储2–11井,沙三段盐膏层较为发育,通过S和Si元素曲线的交叉点,确定沙三段盐膏层的底界深度为2 772.00 m,该深度位于现场录井描述的最后一个盐层底界(2 662.00 m)之下10.00 m,由于留的口袋较短,中完测井探不出盐膏层的底界。根据沙三段盐膏层发育的盖层评价标准(见表1),确定具有封闭性的盖层为2 550.00~2 777.00 m井段(见图5(a)),厚度达227.00 m。该井北偏东方向的文23–22井附近(见图6),沙三段盐膏层断缺,担心存在溢出点,但文23–22井2 738.00~2 939.00 m井段累计产气8 788.7×108 m3,证明存在有效盖层,侧向也是封堵的。该井出口流量曲线发生3次显著变化(见图5(b)),井深2 712.00 m处的突降是阀门数量变化引起的,井深2 806.00 m处的突降是双泵变单泵引起的,井深2 956.00 m处发生了漏失,共漏失100 m3密度0.96 kg/L的钻井液,根据出口流量曲线形态,判断为钻遇砂体内的断层或张裂缝所致(见图2(a)),对盖层的封闭性没有影响。因此,该井沙四段储气层的顶部、侧向都是封闭的,准确的中完井深卡取也为提高井筒封闭性提供了有力支撑。
4. 结 论
1)枯竭砂岩气藏储气库录井的技术关键是在保障钻井安全的同时,从盖层封闭性、断层封闭性及井筒完整性3个角度全面评价储气库的井筒封闭性,并提供相应的技术支持。
2)高度重视井漏,准确判别井漏原因,并结合早期邻井的钻井工程异常、油气显示等资料,可有效评价盖层段断层、裂缝的封闭性。
3)通过XRF录井的特征元素及元素比值并结合岩屑实物录井,可有效识别盖层的岩性,并准确卡准盖层的底界深度,为井筒完整性评价提供有力的技术支撑。
致谢:在论文撰写过程中,得到了中国石化石油工程技术研究院刘江涛、吴海燕及中石化中原石油工程有限公司陈栋、孟韶彬等人的大力支持,在此一并致谢!
-
-
[1] 秦祥熙,张萌,叶佳,等. 河北沧县台拱带中、低温地热资源ORC发电与综合梯级利用[J]. 地球学报, 2019, 40(2): 307–313. doi: 10.3975/cagsb.2019.011101 QIN Xiangxi, ZHANG Meng, YE Jia, et al. ORC power generation and integrated cascade utilization of medium-low temperature geothermal resources in Cangxian Bulge Region, Hebei Province[J]. Acta Geoscientica Sinica, 2019, 40(2): 307–313. doi: 10.3975/cagsb.2019.011101
[2] 陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110 CHEN Zuo, XU Guoqing, JIANG Manqi. The current status anddevelopment recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110
[3] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7. ZENG Yijin. Technical progress and thinking for development of hot dry rock(HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
[4] 付亚荣,李明磊,王树义,等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526–540. FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.
[5] 史猛, 张杰, 殷焘, 等.胶东半岛中低温对流型地热资源水化学特征分析[J].地质学报, 2019, 93(增刊1): 138-148. SHI Meng, ZHANG Jie, YIN Tao, et al. Hydrochemistry characteristicanalysis of low-medium temperature convective geothermal resources in Jiaodong Peninsula[J]. Acta Geologica Sinica, 2019, 93(supplement 1): 138-148.
[6] ARMENTA M F, MONTES M R, ALCALA L M. Wellbore modeling of production well H-1D using WellSim, Los Humeros geothermal field Mexico[C]//Proceedings of the World Geothermal Congress, April, 2015, Melbourne, Australia.
[7] 谯开聪. DZK02 地热井结垢原因分析及解决方案探讨[J]. 内蒙古科技与经济, 2017(8): 99, 110. QIAO Kaicong. Cause analysis and solution discussion of scaling in DZK02 geothermal well[J]. Inner Mongolia Science Technology & Economy, 2017(8): 99, 110.
[8] 王延欣,刘世良,边庆玉,等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202–206. doi: 10.3969/j.issn.2095-560X.2015.03.007 WANG Yanxin, LIU Shiliang, BIAN Qingyu, et al. Scaling analysisof geothermal well from Ganzi and countermeasures for anti-scale[J]. Advances in New & Renewable Energy, 2015, 3(3): 202–206. doi: 10.3969/j.issn.2095-560X.2015.03.007
[9] 李义曼,庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274–281. doi: 10.3969/j.issn.2095-560X.2018.04.004 LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New & Renewable Energy, 2018, 6(4): 274–281. doi: 10.3969/j.issn.2095-560X.2018.04.004
[10] LIN C, KUO T, FAN K, et al. Characterization of well skin using buildup test and radon as a tracer[J]. Journal of Petroleum Science and Engineering, 2011, 78(2): 201–207. doi: 10.1016/j.petrol.2011.07.009
[11] REED M J. Thermodynamic calculations of calcium carbonate scaling in geothermal wells, dixie valley geothermal field, U.S.A.[J]. Geothermics, 1989, 18(1/2): 269–277.
[12] PATZAY G, KARMAN F H, POTA G. Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary[J]. Geothermics, 2003, 32(4/5/6): 627–638.
[13] LEE Bo-Heng, LIN Cheng-Kuo, CHUANG Chung-Wei, et al. A test of calcium carbonate scale inhibition in Chingshui Geothermal Field, Taiwan[C]//Proceedings World Geothermal Congress, April, 2015, Melbourne, Australia.
[14] RAMOS-CANDELARIA M, CABEL A C Jr, BUNING B C, et al. Calcite inhibition field trials at the Mindanao Geothermal ProductionField (MGPF), Philippines[C]//Proceedings World Geothermal Congress, May, 2000, Kyushu Tohoku, Japan.
[15] ZHAO S M, ZHAO K. Formation mechanism and control techniques of calcium carbonate scale in the Langjiu geothermal field Tibet[C]//Proceeding World Geothermal Congress, April, 2015, Melbourne, Australia.
[16] SONG Junchao, LIU Mingyan, SUN Xiuxiu. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water[J]. Geothermics, 2020, 85: 101766. doi: 10.1016/j.geothermics.2019.101766
[17] LI Yiman, PANG Zhonghe, GALECZKA I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 2020, 87: 101844. doi: 10.1016/j.geothermics.2020.101844
[18] 韦梅华. 山西省汾渭裂谷带地热水结垢趋势分析[J]. 华北国土资源, 2018(2): 59–62, 68. doi: 10.3969/j.issn.1672-7487.2018.02.027 WEI Meihua. Analysis of scaling tendency of geothermal water in Fenwei Rift Zone of Shanxi Province[J]. Huabei Land and Resources, 2018(2): 59–62, 68. doi: 10.3969/j.issn.1672-7487.2018.02.027
[19] 张恒,胡亚召,云智汉,等. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用[J]. 新能源进展, 2016, 4(2): 111–117. doi: 10.3969/j.issn.2095-560X.2016.02.006 ZHANG Heng, HU Yazhao, YUN Zhihan, et al. Applying hydro-geochemistry simulating technology to study scaling of the high-temperature geothermal well in Kangding County[J]. Advances in New & Renewable Energy, 2016, 4(2): 111–117. doi: 10.3969/j.issn.2095-560X.2016.02.006
[20] 史杰, 乃尉华, 李明, 等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质, 2018, 45(3): 165–172. SHI Jie, NAI Weihua, LI Ming, et al. Hydrogeochemical characteristics of high temperature geothermalfield of the Quman geothermal field in Xinjiang[J]. Hydrogeology and Engineering Geology, 2018, 45(3): 165–172.
[21] HAIZLIP J R, HAKLIDIR F S T. High noncondensible gas liquid dominated geothermal reservoir, Kizildere, Turkey[R]. Geothermal Resources Council Transactions, 2011.
[22] AKIN T, GUNEY A, KARGI H. Modeling of calcite scaling andestimation of gas breakout depth in a geothermal well by using PHREEQC[C]//Proceedings of the 40th Workshop on Geothermal Reservoir Engineering, January 26-28, 2015, Stanford University, California.
[23] ARNORSSON S. Precipitation of calcite from flashed geothermal waters in Iceland[J]. Contributions to Mineralogy and Petrology, 1978, 66(1): 21–28. doi: 10.1007/BF00376082
-
期刊类型引用(2)
1. 张桂兰,曾从良. 高导流压裂技术在新疆油田的应用与分析. 内蒙古石油化工. 2023(12): 83-90 . 百度学术
2. 张丽萍,李一强,舒振辉,赵田,王航,韩礼红. 新疆油田玛湖地区套管损坏机理及主控因素研究. 石油管材与仪器. 2022(05): 26-31 . 百度学术
其他类型引用(0)