The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield
-
摘要: 针对塔里木油田复杂地质条件下的井漏问题,结合地层特征分析了该油田的井漏类型,总结了该油田防漏堵漏技术发展历程及取得的技术成果。分析可知,塔里木油田漏失类型包括孔隙性漏失、裂缝性漏失和溶洞型漏失,但以裂缝性和缝洞型漏失为主。该油田的防漏堵漏技术发展经历了基础体系建立阶段和特色技术发展完善阶段,形成了油基钻井液防漏堵漏、高强度承压堵漏、高压盐水层防漏堵漏和缝洞型漏失堵漏等技术。通过分析梳理,明确了塔里木油田防漏堵漏技术现状和依然存在的漏失难题,确定了攻关方向,提出了加强地层预测、研发或引进新型堵漏技术、丰富工程技术手段和开发大数据堵漏软件等技术发展建议。Abstract: With the goal of solving the problem of circulation lost under complicated geological conditions of the Tarim Oilfield, this paper analyzed the types of circulation lost in this oilfield combining its formation characteristics, and summarized the development history and achievements of leakage prevention and plugging technologies in this field. It shows that leakages induced by porosity, fracture and caverns are all encountered in Tarim Oilfield, but mainly caused by fractures and cavity. The development of leakage prevention and plugging technologies in this oilfield has undergone two stages: the establishment of basic system and the development and perfection of characteristic technology. A series of techniques have been formed such as oil-based drilling fluid leakage prevention and plugging, high-strength pressure-bearing plugging, high-pressure brine layer leakage prevention and plugging, and fracture-cavity leakage plugging. From the analysis and sorting, we have clarified the current status of leakage prevention and plugging techniques in Tarim Oilfield and the remaining challenges in leakage control, and determined the trend of research. We proposed suggestions for further development of those technologies, such as strengthening formation prediction, developing or introducing new plugging technologies, enriching engineering techniques, and developing big data plugging software.
-
-
表 1 精细控压钻井技术在塔中I号气田的应用情况
Table 1 Application of precise pressure management drilling technology in the Tazhong I Gas Field
井号 井型 控压钻进井段/m 钻井液
漏失量/m3中古105H 水平井 6 285.00~6 829.00 0 TZ26-H7 水平井 4 223.00~5 699.00 0 TZ26-H9 水平井 4 343.00~4 637.00 0 TZ26-H10 水平井 4 547.00~5 643.00 0 TZ26-H11 水平井 4 588.00~5 175.00 0 TZ721-8H 水平井 5 033.00~6 705.00 0 TZ5-H2 水平井 6 296.00~7 810.00 0 表 2 缝洞型漏失封堵技术应用效果
Table 2 Application effect of plugging technology for fracture-cavity leakage
井号 漏失量/
m3投球 施工效果 数量/个 直径/mm ZG-a 885.7 4 000 19 堵漏成功 ZG-b 3 728.0 10 000 10 堵漏成功,地层承压能力提高了7.5 MPa ZG-c 2 284.0 5 000 19 堵漏成功 ZG-d 3 078.0 10 000 19 堵漏成功 30 000 19 堵漏球无法架桥,效果不明显 ZG-e 1 263.9 30 000 19 施工效果不明显 ZG-f 2 732.6 30 000 19 堵漏后,油气活跃程度明显降低,不再出现液面上升或套压升高现象 ZG-g 3 989.6 30 000 19 堵漏后,采用1.08 kg/L钻井液钻进21 m,未漏 10 000 19 施工效果不明显 ZG-h 1 924.6 45 000 19 堵漏后恢复钻进,堵漏成功 -
[1] 邓昌松,张宗谭,冯少波,等. 高含硫、大漏、超深水平井钻完井技术:以塔里木油田中古10HC井为例[J]. 石油钻采工艺,2018,40(1):27–32. DENG Changsong, ZHANG Zongtan, FENG Shaobo, et al. Drilling and completion technologies suitable for ultradeep horizontal wells of high sulfur content and serious circulation loss: a case study on Well 10HC of Middle Paleozoic in Tarim Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(1): 27–32.
[2] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28. LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
[3] 黄智斌, 吴绍祖, 赵治信,等. 塔里木盆地及周边综合地层区划[J]. 新疆石油地质,2002,23(1):13–17. HUANG Zhibin,WU Shaozu, ZHAO Zhixin,et al. The composite regional stratigraphic classification in Tarim Basin and its circumferences[J]. Xinjiang Petroleum Geology, 2002, 23(1): 13–17.
[4] 李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术,2017,45(2):10–14. LI Ning,ZHOU Xiaojun,ZHOU Bo,et al. Technologies for fast drilling ultra-deep wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.
[5] 李兵,邓尚,李王鹏,等. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义[J]. 特种油气藏,2019,26(4):45–51. LI Bing, DENG Shang, LI Wangpeng, et al. Strike-slip fault system activity and hydrocarbon geology understanding in Tahe of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 45–51.
[6] 王新新,朱永峰,杨鹏飞,等. 塔里木盆地哈拉哈塘油田A-B区块二叠系火成岩漏失原因与应对措施[J]. 地质科技情报,2019,38(2):130–136. WANG Xinxin, ZHU Yongfeng, YANG Pengfei, et al. Lost circulation reason and solutions of Permian igneous rock in Halahatang Oilfield A-B Area, Tarim Basin[J]. Geological Science and Technology Information, 2019, 38(2): 130–136.
[7] 杨金龙,罗静兰,何发歧,等. 塔河地区二叠系火山岩储集层特征[J]. 石油勘探与开发,2004,31(4):44–47. doi: 10.3321/j.issn:1000-0747.2004.04.012 YANG Jinlong, LUO Jinglan, HE Faqi, et al. Permian volcanic reservoirs in the Tahe region[J]. Petroleum Exploration and Development, 2004, 31(4): 44–47. doi: 10.3321/j.issn:1000-0747.2004.04.012
[8] 陈柳,刘翔,洪英林,等. 塔中碳酸盐岩储层恶性井漏治理现状及对策浅析[J]. 西部探矿工程,2018,30(6):69–72. doi: 10.3969/j.issn.1004-5716.2018.06.026 CHEN Liu, LIU Xiang, HONG Yinglin, et al. Treatment of malignant well leakage in Tarim carbonate reservoir and countermeasures[J]. West-China Exploration Engineering, 2018, 30(6): 69–72. doi: 10.3969/j.issn.1004-5716.2018.06.026
[9] 王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33. WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33.
[10] 张路锋,周福建,张士诚,等. 塔里木克深致密砂岩气藏基质钻井液伤害评价[J]. 钻井液与完井液,2019,36(1):126–132. ZHANG Lufeng, ZHOU Fujian, ZHANG Shicheng,et al. Evaluation of drilling fluid damage to matrices of tight sandstone of Keshen gas reservoir in Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 126–132.
[11] 任保友,刘锋报,徐兴梁,等. 塔里木山前构造克深某区块盐膏层井漏技术处理[J]. 西部探矿工程,2018,30(2):75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027 REN Baoyou, LIU Fengbao, XU Xingliang, et al. Treatment of well leakage of salt-paste layer in a block of Keshen in Tarim Piedmont[J]. West-China Exploration Engineering, 2018, 30(2): 75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027
[12] 何选蓬,程天辉,周健,等. 秋里塔格构造带风险探井中秋1井安全钻井关键技术[J]. 石油钻采工艺,2019,41(1):1–7. HE Xuanpeng, CHENG Tianhui, ZHOU Jian, et al. Key technologies of safe drilling in Zhongqiu 1 Well, a risk exploration well in Qiulitag Tectonic Belt[J]. Oil Drilling & Production Technology, 2019, 41(1): 1–7.
-
期刊类型引用(6)
1. 李成全,何世明,张平. 磨溪-高石梯构造超深定向井固井水泥浆技术. 石油与天然气化工. 2020(02): 73-79 . 百度学术
2. 罗鸣,吴江,陈浩东,肖平. 南海西部窄安全密度窗口超高温高压钻井技术. 石油钻探技术. 2019(01): 8-12 . 本站查看
3. 李中,郭永宾,管申,刘智勤,彭巍. 涠洲K油田复杂工况旋转尾管固井技术. 钻井液与完井液. 2019(01): 87-92 . 百度学术
4. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 . 百度学术
5. 吴江,李炎军,张万栋,韦龙贵,任冠龙. 南海西部高温高压小井眼水平井钻完井储层保护技术研究及应用. 探矿工程(岩土钻掘工程). 2017(08): 18-22 . 百度学术
6. 柳进. 超深水平井中旋转尾管固井工具的应用. 工程技术研究. 2017(03): 94-95 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 884
- HTML全文浏览量: 297
- PDF下载量: 194
- 被引次数: 9