Experimental Study on the Scale Effect Law of Shale Strength and Deformation under Different Loading Modes
-
摘要: 为了认识加载方式对页岩强度与变形尺度效应的影响,将鄂尔多斯盆地长7段页岩露头切割成不同尺度岩样,进行了三轴压缩、单轴压缩和巴西劈裂试验,分析了不同加载方式下页岩强度与变形的尺度效应规律。三轴压缩试验中,页岩强度与变形的尺度效应在岩样高径比大于2和小于2时存在明显差异,岩样高径比为0.4~0.8时,端部摩擦效应和非均质性对页岩强度与变形的尺度效应起主导作用;页岩强度与变形参数的尺度效应,单轴压缩时最显著,巴西劈裂次之,三轴压缩最不明显;进行三轴和单轴加载时,页岩应力应变曲线的分段变形特征不存在尺度效应现象,但在巴西劈裂试验时,页岩应力应变曲线的分段变形特征多样,其与尺度的关系比较复杂;3种加载方式下,页岩的破坏模式均不存在尺度效应;非均质性、各向异性和端部摩擦效应是页岩在不同加载方式下强度与变形尺度效应程度不同的根本原因。上述研究结果可为室内选择合理的岩样加载方式、测试尺度和确定页岩力学参数等提供参考。Abstract: In order to explore the influence of different loading modes on the scale effect on shale strength and deformation, 7 shale outcrops of the Yanchang Formation in the Ordos Basin were taken and made into different sized core samples for uniaxial, triaxial compression and Brazilian splitting tests. The scale effect law of shale strength and deformation were analyzed under different loading modes. The results show that there are obvious differences in the scale effect on shale strength and deformation when core height/diameter ratio is larger or less than 2 in the triaxial compression test, and end friction effect and heterogeneity will play a decisive role when the ratio is between 0.4 and 0.8. In uniaxial compression tests, the scale effect of shale strength and deformation is the most significant, followed by Brazilian splitting, and triaxial compression. In uniaxial and triaxial loading tests of shale, there is no effect of scale on the sectional deformation characteristics of stress-strain curve of rock sample while it is various and the scale effect law is complex in Brazilian splitting test. Surprisingly, no scale effect is observed in shale failure modes under three loading modes. Heterogeneity, anisotropy and end friction effect are the fundamental causes in different effects of scale on strength and deformation under different loading modes. The experimental results can provide guidance for the selection of reasonable loading mode, testing scale and determination of rock mechanical parameters.
-
Keywords:
- shale /
- loading modes /
- compressive strength /
- tensile strength /
- deformation /
- scale effect /
- laboratory testing
-
-
表 1 尺度效应显著性对比结果
Table 1 Comparison on the significances of scale effect
加载方式 具有显著尺度效应 不具有显著尺度效应 尺度效应
显著程度强度与变形参数数目 决定系数均值 强度与变形参数数目 决定系数均值 单轴加载 7 0.801 1 1 0.307 0 最显著 巴西劈裂 4 0.742 2 4 0.165 7 较显著 三轴加载 4 0.684 7 4 0.101 8 不显著 -
[1] 晏长根,伍法权,祁生文,等. 随机节理岩体变形与强度参数及其尺寸效应的数值模拟研究[J]. 岩土工程学报, 2009, 31(6): 879–885. doi: 10.3321/j.issn:1000-4548.2009.06.010 YAN Changgen, WU Faquan, QI Shengwen, et al. Deformation and strength parameters and size effect of random jointed rock mass by numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 879–885. doi: 10.3321/j.issn:1000-4548.2009.06.010
[2] 张明,卢裕杰,介玉新,等. 不同加载条件下岩石强度尺寸效应的数值模拟[J]. 水力发电学报, 2011, 30(4): 147–154. ZHANG Ming, LU Yujie, JIE Yuxin, et al. Numerical simulation of strength size effect of rocks under different loadings[J]. Journal of Hydroelectric Engineering, 2011, 30(4): 147–154.
[3] 唐伟,赵晓豹,雷继辕,等. 不同围压下岩石抗压强度与变形参数尺寸效应的数值模拟[J]. 高校地质学报, 2016, 22(3): 580–588. TANG Wei, ZHAO Xiaobao, LEI Jiyuan, et al. Numerical simulation on the size effect of compressive strength and deformation parameters of rock materials under different confining pressures[J]. Geological Journal of China Universities, 2016, 22(3): 580–588.
[4] 徐燕飞,赵伏军,王国举,等. 不同岩石巴西劈裂强度的尺寸效应[J]. 矿业工程研究, 2012, 27(4): 7–12. doi: 10.3969/j.issn.1674-5876.2012.04.003 XU Yanfei, ZHAO Fujun, WANG Guoju, et al. Size effect of Brazilian splitting strength of different rocks[J]. Mineral Engineering Research, 2012, 27(4): 7–12. doi: 10.3969/j.issn.1674-5876.2012.04.003
[5] 邓树新,郑永来,郑顺,等. 考虑围压对岩石强度尺寸效应影响的统计模型[J]. 水文地质工程地质, 2015, 42(1): 60–64. DENG Shuxin, ZHENG Yonglai, ZHENG Shun, et al. A statistical model considering the effect of confining pressure on the size effect of rock strength[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 60–64.
[6] 陈瑜,黄永恒,曹平,等. 不同高径比时软岩强度与变形尺寸效应试验研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1073–1078. CHEN Yu, HUANG Yongheng, CAO Ping, et al. Size effect experimental study of strength and deformation in different height-to-diameter ratio soft rocks[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1073–1078.
[7] 张后全, 徐建峰, 贺永年, 等.灰岩单轴压缩实验室尺度效应研究[J].岩石力学与工程学报, 2012, 31(增刊2): 3491–3496. ZHANG Houquan, XU Jianfeng, HE Yongnian, et al. Study of laboratory scale effect of limestone under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(supplement 2): 3491–3496.
[8] 杨圣奇,徐卫亚. 不同围压下岩石材料强度尺寸效应的数值模拟[J]. 河海大学学报(自然科学版), 2004, 32(5): 578–582. YANG Shengqi, XU Weiya. Numerical simulation of strength-size effect of rock materials under different confining pressures[J]. Journal of Hohai University (Natural Sciences), 2004, 32(5): 578–582.
[9] 吕兆兴,冯增朝,赵阳升. 岩石的非均质性对其材料强度尺寸效应的影响[J]. 煤炭学报, 2007, 32(9): 917–920. doi: 10.3321/j.issn:0253-9993.2007.09.005 LYU Zhaoxing, FENG Zengchao, ZHAO Yangsheng. Influence of rock inhomogeneity on strength-size effect of rock materials[J]. Journal of China Coal Society, 2007, 32(9): 917–920. doi: 10.3321/j.issn:0253-9993.2007.09.005
[10] 侯振学,李波,唐闻强,等. 一种定量评价致密砂岩储层流体性质的新方法:相关系数法[J]. 地球物理学进展, 2017, 32(5): 116–123. HOU Zhenxue, LI Bo, TANG Wenqiang, et al. New method for quantitative evaluation fluid properties of tight sandstone-correlation coefficient method[J]. Progress in Geophysics, 2017, 32(5): 116–123.
[11] 杨东辉,赵毅鑫,张村,等. 循环加载对沉积岩岩石Kaiser效应影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2697–2708. YANG Donghui, ZHAO Yixin, ZHANG Cun, et al. Experimental study on the influence of cyclic loading on Kaiser effect of sedimentary rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2697–2708.
[12] 李帅, 陈军斌, 王汉青,等. 鄂尔多斯盆地长7 段页岩强度与变形尺度效应规律试验研究[J].煤炭学报, 2020, doi: 10.13225/j.cnki.jccs.2019.1421. LI Shuai,CHEN Junbin,WANG Hanqing,et al. Experimental study on the scale effect of strength and deformation of Chang 7 shale in Ordos Basin[J]. Journal of China Coal Society, 2020, doi: 10.13225/j.cnki.jccs.2019.1421.
[13] 李帅,陈军斌,王汉青,等. 基于多尺度页岩巴西劈裂试验的岩石强度尺度效应根源研究[J]. 力学与实践, 2020, 42(1): 35–41. LI Shuai, CHEN Junbin, WANG Hanqing, et al. A study on the origin of scale effect of rock strength based on multi-scale shale Brazilian splitting test[J]. Mechanics in Engineering, 2020, 42(1): 35–41.
-
期刊类型引用(3)
1. 张小佳,刘文红,申昭熙,钱征华,张应红,周海洋. 基于RFID技术的石油钻具管理系统研制. 石油钻探技术. 2022(06): 107-111 . 本站查看
2. 崔龙兵,胡亮,席步祥,阮臣良,程光明,赵建军. 射频识别随钻扩眼器的研制与应用. 钻采工艺. 2020(04): 71-74+10 . 百度学术
3. 高胜,滕向松,张丽巍,刘跃宝,范立华. 井下无线射频识别系统作业环境影响因素分析. 石油机械. 2019(01): 86-92 . 百度学术
其他类型引用(2)