缝洞型碳酸盐岩储层压裂效果评价方法试验研究

李新勇, 耿宇迪, 刘志远, 汪文智, 周舟

李新勇, 耿宇迪, 刘志远, 汪文智, 周舟. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074
引用本文: 李新勇, 耿宇迪, 刘志远, 汪文智, 周舟. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074
LI Xinyong, GENG Yudi, LIU Zhiyuan, WANG Wenzhi, ZHOU Zhou. An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074
Citation: LI Xinyong, GENG Yudi, LIU Zhiyuan, WANG Wenzhi, ZHOU Zhou. An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074

缝洞型碳酸盐岩储层压裂效果评价方法试验研究

基金项目: 国家科技重大专项“缝洞型油藏堵调及靶向酸压工艺技术”(编号:2016ZX05014-005-003)、国家自然科学基金青年科学基金项目“碳酸盐岩储层孔洞与水力裂缝扩展相互作用的力学机理研究”(编号:51704306)资助
详细信息
    作者简介:

    李新勇(1972—),男,新疆乌鲁木齐人,1997年毕业于西南石油学院采油工程专业,高级工程师,主要从事储层压裂改造方面的研究工作。E-mail:lixinyong.xbsj@sinopec.com

  • 中图分类号: TE357.1+1

An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir

  • 摘要: 目前,由于缺乏缝洞型碳酸盐岩储层压裂裂缝沟通效果评价体系,无法实现压裂改造效果量化评价,因而需要针对缝洞型碳酸盐岩特征建立压裂改造效果评价方法。利用人造缝洞型碳酸盐岩岩心进行了水力压裂物理模拟试验,基于试验结果建立了符合缝洞型碳酸盐岩压裂特征的评价标准,提出了“缝洞沟通系数”的概念,然后利用该系数定量分析了地应力差对缝洞型碳酸盐岩压裂效果的影响。试验发现:用以评价压裂效果的SRV系数无法准确评价缝洞型碳酸盐岩压裂效果,而缝洞沟通系数可以针对此类缝、洞发育的岩石情况作出准确的压裂效果评价;利用缝洞沟通系数评价了水平地应力差对缝洞碳酸盐岩压裂效果的影响,发现随着地应力差增大缝洞沟通系数先降低后升高。研究结果表明,缝洞型碳酸盐岩储层中各因素对压裂改造效果的影响规律与常规储层不同,利用缝洞沟通系数分析压裂裂缝扩展沟通情况针对性更强、评价缝洞碳酸盐岩储层压裂改造效果更有效。
    Abstract: The lack of evaluation system for evaluating communication of fractures in vuggy carbonate reservoirs makes it impossible to quantitatively analyze post frac treatment. Therefore, it is necessary to establish an evaluation method for post frac according to the characteristics of abundant natural fractures and karst caves in carbonate reservoirs. A physical experiment simulated hydraulic fracturing on artificial fractured-vuggy carbonate cores was conducted, the evaluation criteria that meets the fracturing characteristics of fractured-vuggy carbonate reservoirs were proposed based on the experimental results, and the concept of fractured-vuggy communication coefficient was proposed. Then, the proposed coefficient was used to quantitatively analyze the influence of in-situ differential stress on vuggy carbonate fracturing effect. The experimental results show that the SRV coefficient used to evaluate fracturing effect cannot accurately evaluate the effect of fractured-vuggy carbonate fracturing, while the fractured-vuggy communication coefficient can make a more accurate evaluation. The influence of horizontal in-situ differential stress on fractured-vuggy carbonate fracturing effect was evaluated with the proposed coefficient. It is found that the coefficient decreases first then increases with the increase of in-situ differential stress. The results demonstrate that the influence of various factors on fracturing effect of fractured-vuggy carbonate reservoirs are different from that of conventional ones, and the proposed fractured-vuggy communication coefficient can be used to more precisely analyze the fracture propagation and communication conditions, and to more effectively evaluate such reservoirs.
  • 图  1   地层储集体分布示意

    Figure  1.   Distribution diagram of stratigraphic reservoir

    图  2   人造碳酸盐岩岩心缝洞分布示意

    Figure  2.   Schematic diagram of artificial carbonate core

    图  3   模拟井筒示意

    Figure  3.   Schematic diagram of simulated wellbore

    图  4   真三轴水力压裂物理模拟试验系统

    Figure  4.   Physical simulation experiment system of true triaxial hydraulic fracturing

    图  5   人造岩心压裂试验结果

    Figure  5.   Experimental results of fracturing on artificial core

    图  6   相同SRA值的页岩压裂试验结果

    Figure  6.   Experimental result of fracturing in shale with the same SRA value

    图  7   水平地应力差对缝洞沟通系数的影响

    Figure  7.   The influence of horizontal in-situ differential stress on the fractured-vuggy communication coefficient for fractured-dvuggy reservoirs

    图  8   缝洞沟通系数与裂缝沟通系数随地应力差变化情况对比

    Figure  8.   Comparison on the change of fractured-vuggy communication coefficient and fracture communication coefficient with in-situ differential stress

    表  1   人造岩心与天然岩心参数对比

    Table  1   Comparison on the parameters of artificial core and natural core

    岩心强度/MPa弹性模量/GPa泊松比矿物成分,%孔隙度,%渗透率/mD
    方解石白云石其他
    人造岩心310410.23086.014.00 1.10.1
    天然岩心320440.24586.212.71.10.7~2.50.05~0.50
    相似度,% 94939393 9190
    下载: 导出CSV

    表  2   试验参数与现场压裂施工数据的对应情况

    Table  2   Correspondence between the experimental parameters and field fracturing datas

    试样编号围压/MPa排量/(mL·min−1压裂液黏度/(mPa·s)
    试验现场试验现场试验现场
    120/15/7120/101/75106.5×106 1 1
    220/15/7120/101/75 53.8×106 1 1
    320/15/7120/101/75209.5×106 1 1
    420/15/7120/101/75106.5×1061010
    520/15/7120/101/75106.5×1063030
    620/15/9120/101/83106.5×1061010
    720/15/11120/101/90106.5×1061010
    820/15/7120/101/75106.5×1061010
    920/15/9120/101/83106.5×1061010
    1020/15/11120/101/90106.5×1061010
    1120/15/7120/101/75106.5×1061010
    1220/15/9120/101/83106.5×1061010
    1320/15/11120/101/90106.5×1061010
    下载: 导出CSV
  • [1] 汪虎,郭印同,王磊,等. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017, 38(9): 2496–2506.

    WANG Hu, GUO Yintong, WANG Lei, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017, 38(9): 2496–2506.

    [2] 侯冰,陈勉,李志猛,等. 页岩储集层水力裂缝网络扩展规模评价方法[J]. 石油勘探与开发, 2014, 41(6): 763–768. doi: 10.11698/PED.2014.06.18

    HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 763–768. doi: 10.11698/PED.2014.06.18

    [3] 侯冰,程万,陈勉,等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12): 81–86. doi: 10.3787/j.issn.1000-0976.2014.12.011

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86. doi: 10.3787/j.issn.1000-0976.2014.12.011

    [4]

    FISHER M K, WRIGHT C A, Davidson B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett shale[J]. SPE Production & Facilities, 2005, 20(2): 85–93.

    [5]

    MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[R]. SPE 77440, 2002.

    [6]

    MAYERHOFER M J, LOLON E, WARPINSKI N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1): 89–98.

    [7]

    MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al. Integration of microseismic-fracture-mapping results with numerical fracture network production modeling in the Barnett shale[R]. SPE 102103, 2006.

    [8] 房好青,赵兵,汪文智,等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术, 2019, 47(5): 97–103.

    FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97–103.

    [9] 李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术, 2020, 48(2): 88–92.

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92.

    [10] 考佳玮,金衍,付卫能,等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1332–1339.

    KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1332–1339.

    [11] 陈勉, 姜浒, 张广清, 等.水力压裂物理模拟实验中的相似准则的建立[C]//第四届全国低渗透油气藏压裂酸化技术研讨会, 北京, 2010.

    CHEN Mian, JIANG Hu, ZHANG Guangqing, et al. Establishment of similarity criterion in hydraulic fracturing physical simulation experiment[C]//The 4th National Seminar on Fracturing and Acidizing Technology for Low Permeability Oil and Gas Reservoirs, Beijing, 2010.

  • 期刊类型引用(7)

    1. 梁红军,刘洪涛,颜辉,陈凯枫,阳君奇,周智. 防斜打快技术在库车前陆区的实践应用. 新疆石油天然气. 2023(02): 49-55 . 百度学术
    2. 马俊强,李飞,张光伟. 浅析煤层气参数井取芯段井斜超标原因及预防措施——基于平参2井. 中国煤层气. 2022(03): 21-25 . 百度学术
    3. 李成嵩,王银生. 东营地区地热回灌井钻井完井技术研究与试验. 石油钻探技术. 2021(06): 50-54 . 本站查看
    4. 张凯. 复合钻进技术在红柳煤矿冻结孔施工中的应用. 探矿工程(岩土钻掘工程). 2020(02): 54-58 . 百度学术
    5. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    6. 刘勇. 石油定向井常用钻具组合的分析与探讨. 中国石油石化. 2017(02): 3-4 . 百度学术
    7. 李玮,李卓伦,刘伟卿,邱晓宁,陈世春. 扭转冲击提速工具在文安区块的现场应用. 特种油气藏. 2016(04): 144-146+158 . 百度学术

    其他类型引用(4)

图(8)  /  表(2)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  279
  • PDF下载量:  61
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-08-26
  • 修回日期:  2020-06-15
  • 网络出版日期:  2020-08-18
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回