川南深层页岩气水平井体积压裂关键技术

曾波, 王星皓, 黄浩勇, 张柟乔, 岳文翰, 邓琪

曾波, 王星皓, 黄浩勇, 张柟乔, 岳文翰, 邓琪. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
引用本文: 曾波, 王星皓, 黄浩勇, 张柟乔, 岳文翰, 邓琪. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
Citation: ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073

川南深层页岩气水平井体积压裂关键技术

基金项目: 国家科技重大专项“长宁—威远页岩气开发示范工程”(编号:2016ZX05062)、中国石油天然气股份有限公司重大科技专项“西南油气田天然气上产300亿立方米关键技术研究与应用”(编号:2016E-06)、中国石油集团公司重大现场试验“深层页岩气有效开采关键技术攻关与试验”(编号:2019F-31)资助
详细信息
    作者简介:

    曾波(1982—),男,四川德阳人,2005年毕业于成都理工大学资源勘查工程专业,2015年获西南石油大学石油与天然气工程专业工程硕士学位,高级工程师,主要从事储层改造工艺研究与现场应用工作。E-mail:zeng_bo@petrochina.com.cn

  • 中图分类号: TE357.1

Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan

  • 摘要: 针对川南深层页岩气水平井压裂技术不成熟、关键参数不合理和压裂后单井产量低的问题,在综合分析已压裂井压裂效果的基础上,结合川南深层页岩储层地质工程特点,以提高缝网复杂程度、增大裂缝改造体积、维持裂缝长期导流能力为核心,采用室内试验与数值模拟相结合的方式,优化了压裂工艺和关键参数,形成了以“密切割分段+短簇距布缝、大孔径等孔径射孔、大排量低黏滑溜水加砂、高强度小粒径组合支撑剂、大规模高强度改造”为主的深层页岩气水平井体积压裂关键技术。Z3井应用该技术后,获得了21.3×104 m3/d的产气量,较同区块未用该技术的井提高1倍以上;川南地区多口深层页岩气水平井应用该技术后获得高产,说明该技术有较好的适应性,可推广应用。川南深层页岩气水平井体积压裂关键技术为3 500~4 500 m页岩气资源的有效动用奠定了基础。
    Abstract: There are persistent problems of immature fracturing technology, unreasonable key parameters, and low production of single well after fracturing in deep shale gas horizontal wells in Southern Sichuan. This paper introduces a process for optimizing the fracturing process and key parameters based on laboratory evaluation and numerical simulation by combining the geological engineering characteristics of deep shale reservoirs in Southern Sichuan through comprehensive analysis of fracturing effect of fractured wells. It focuses on improving the complexity of fracture networks, increasing the volume of fracturing stimulation, and maintaining the long-term conductivity of fractures. The key technology of volumetric fracturing for deep shale gas horizontal wells that focuses on“dense stage+short cluster spacing, equal-holesize large hole perforation, sand fracturing with low viscosity slick water at high pumping rate, high strength proppant with small particle size combinations, and large-scale fracturing with high-strength”is formed. After the application of this technology in Well Z3, its production achieved the rate of 21.3×104m3/d, which doubled and even more than that of wells with normal fracturing methods in the same block. In addition, high-yield production was achieved in several gas wells by applying this technology in deep shale gas horizontal wells in Southern Sichuan. This demonstrated that the technology has good adaptability and can be widely used. The successful application of this key technology in Southern Sichuan has laid a foundation for effective development of shale gas resources with depth around 3 500–4 500 m in Southern Sichuan.
  • 图  1   不同施工排量下的改造体积和净压力模拟结果

    Figure  1.   Simulation results of stimulated reservoir volume (SRV) and net pressure at different pumping rates

    图  2   不同埋深下的储层改造体积模拟结果

    Figure  2.   Simulation results of SRV under different buried depths

    图  3   Z2井岩心嵌入支撑剂后表面变化情况

    Figure  3.   Changes of core surface after proppant is embedded in Well Z2

    图  4   L4井岩心嵌入支撑剂后表面变化情况

    Figure  4.   Changes of core surface after proppant is embedded in Well L4

    图  5   Z1-1井微地震成果

    Figure  5.   Microseismic results of Well Z1-1

    图  6   Z3井微地震成果

    Figure  6.   Microseismic results of Well Z3

    表  1   川南深层与中深层(五峰组—龙马溪组)页岩气储层主要地质参数对比

    Table  1   Comparison of main geological parameters between deep and medium-deep shale gas reservoirs in Southern Sichuan (Wufeng–Longmaxi Formations)

    地质参数页岩气储层
    中深层区块1中深层区块2深层
    构造背景平缓向斜和低缓斜坡为主低陡构造和低
    褶构造为主
    压力系数1.2~1.71.2~2.11.7~2.2
    优质页岩储层厚度/m25~3520~4525~65
    孔隙度,%3.5~7.05.0~10.22.8~8.0
    总有机碳含量,%3.6~4.43.4~3.82.0~5.0
    总含气量/(m3·t–13.5~7.03.5~7.04.0~6.5
    干酪根类型II–II1I
    热成熟度,%2.4~3.51.8~2.62.0~3.6
    脆性矿物含量,%63~7755~8050~80
    构造复杂程度较复杂较简单复杂
    层理发育情况发育发育较发育
    天然裂缝发育程度较发育较发育较发育
    下载: 导出CSV

    表  2   川南深层与中深层(五峰组—龙马溪组)页岩气储层主要工程参数对比

    Table  2   Comparison of main engineering parameters between deep and medium-deep shale gas reservoirs in Southern Sichuan (Wufeng–Longmaxi Formations)

    工程参数页岩气储层
    中深层区块1中深层区块2深层
    地层温度/℃87~11072~133110~145
    闭合应力/MPa45~5054~6980~95
    应力差/MPa131815~25
    应力梯度/(MPa·m−10.0230.0230.022~0.024
    杨氏模量/GPa26~4520~3332~45
    泊松比0.18~0.220.19~0.280.20~0.25
    抗压强度/MPa240~265189~202330~388
    下载: 导出CSV

    表  3   川南深层已压裂页岩气水平井的压裂工艺参数

    Table  3   Fracturing technology parameters of fractured shale gas horizontal wells in Southern Sichuan

    井号压裂段长/m施工排量/(m3·min–1段间距/m簇间距/m加砂强度/(t·m–1用液强度/(m3·m–1胶液比,%
    T162411.0125251.1311.838.8
    L147910.5 96212.0115.135.7
    Y1-H284611.3 94192.1813.645.6
    G5-H11 010 11.9101350.4410.1 8.9
    G2-H11 120 9.7102361.32 8.845.6
    D1-H11 266 7.5115400.54 7.048.1
    D2-H11 469 10.7 98361.3611.666.7
    D2-H2650 8.4130381.0111.461.9
    Y3-H21 490 10.2106321.6512.588.0
    Ti1-H11 542 10.8110351.4913.260.5
    H201-H11 386 10.4107351.8112.167.9
    Y2-H1540 9.9108341.26 9.163.9
    Y2-H21 040 8.8104351.17 8.968.3
    T2-H2970 9.6 75251.44 7.262.1
    下载: 导出CSV

    表  4   常规射孔与等孔径射孔射孔参数对比

    Table  4   Comparison of perforation parameters between conventional penetration and equal-holesize penetration

    相位角/(°)孔径/mm孔面积/mm2
    常规射孔等孔径射孔常规射孔/等孔径射孔
    012.7 10.1 126.67 80.12
    6010.1 9.980.1276.98
    1208.110.2 51.5381.71
    1807.59.444.1869.39
    2408.29.552.8170.88
    3009.99.976.9876.98
    下载: 导出CSV

    表  5   川南深层页岩气井目的层敏感性评价试验结果

    Table  5   Results of sensitivity evaluation test for target layers of deep shale gas wells in Southern Sichuan

    井号液体体系毛细管吸收时间比值线性膨胀率,%
    Z2滑溜水1.171.77
    线性胶1.212.12
    Lu3滑溜水1.121.59
    线性胶1.211.46
    Z3滑溜水1.302.98
    线性胶1.852.60
    Zi2滑溜水0.830.53
    H2滑溜水1.201.02
    下载: 导出CSV

    表  6   Z1-1井与Z3井关键参数对比

    Table  6   Comparison of key parameters between Well Z1-1 and Well Z3

    井号总有机碳
    含量,%
    总含气量/
    (m3·t–1
    孔隙度,
    %
    脆性指
    数,%
    应力差/
    MPa
    分段长度/
    m
    液体类型施工排量/
    (m3·min–1
    加砂强度/
    (t·m–1
    用液强度/
    (m3·m–1
    测试产量/
    (104m3·d–1
    Z1-14.14.35.674.513~1660~70滑溜水+胶液10~121.383210.56
    Z34.35.25.472.417~1950~55滑溜水为主15~171.754221.30
    下载: 导出CSV
  • [1] 董大忠,施振生,管全中,等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67–76. doi: 10.3787/j.issn.1000-0976.2018.04.008

    DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67–76. doi: 10.3787/j.issn.1000-0976.2018.04.008

    [2] 伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074

    WU Xianzhu. Key technologies in the efficient development of the Weiyuan shale gas reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074

    [3] 马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161–169.

    MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in Southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161–169.

    [4] 冯国强,赵立强,卞晓冰,等. 深层页岩气水平井多尺度裂缝压裂技术[J]. 石油钻探技术, 2017, 45(6): 77–82.

    FENG Guoqiang, ZHAO Liqiang, BIAN Xiaobing, et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays[J]. Petroleum Drilling Techniques, 2017, 45(6): 77–82.

    [5] 吴奇,胥云,王腾飞,等. 增产改造理念的重大变革:体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7–12. doi: 10.3787/j.issn.1000-0976.2011.04.002

    WU Qi, XU Yun, WANG Tengfei, et al. The revolution of reservoir stimulation: an introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7–12. doi: 10.3787/j.issn.1000-0976.2011.04.002

    [6] 吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352–358.

    WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.

    [7] 曾顺鹏,张国强,韩家新,等. 多裂缝应力阴影效应模型及水平井分段压裂优化设计[J]. 天然气工业, 2015, 35(3): 55–59. doi: 10.3787/j.issn.1000-0976.2015.03.008

    ZENG Shunpeng, ZHANG Guoqiang, HAN Jiaxin, et al. Model of multi-fracture stress shadow effect and optimization design for staged fracturing of horizontal wells[J]. Natural Gas Industry, 2015, 35(3): 55–59. doi: 10.3787/j.issn.1000-0976.2015.03.008

    [8]

    NAGEL N, ZHANG F, SANCHEZ-NAGEL M, et al. Stress shadow evaluations for completion design in unconventional plays[R]. SPE 167128, 2013.

    [9] 邓燕,尹建,郭建春. 水平井多段压裂应力场计算新模型[J]. 岩土力学, 2015, 36(3): 660–666.

    DENG Yan, YIN Jian, GUO Jianchun. A new calculation model for stress field due to horizontal well staged fracturing[J]. Rock and Soil Mechanics, 2015, 36(3): 660–666.

    [10] 吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011

    WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011

    [11]

    CADOTTE R J, WHITSETT A, SORRELL M, et al. Modern completion optimization in the Haynesville Shale[J]. SPE 187315, 2017.

    [12] 付永强,马发明,曾立新,等. 页岩气藏储层压裂实验评价关键技术[J]. 天然气工业, 2011, 31(4): 51–54. doi: 10.3787/j.issn.1000-0976.2011.04.012

    FU Yongqiang, MA Faming, ZENG Lixin, et al. Key techniques of experimental evaluation in the fracturing treatment for shale gas reservoirs[J]. Natural Gas Industry, 2011, 31(4): 51–54. doi: 10.3787/j.issn.1000-0976.2011.04.012

    [13] 杨建,付永强,陈鸿飞,等. 页岩储层的岩石力学特性[J]. 天然气工业, 2012, 32(7): 12–14. doi: 10.3787/j.issn.1000-0976.2012.07.003

    YANG Jian, FU Yongqiang, CHEN Hongfei, et al. Rock mechanical characteristics of shale reserviors[J]. Natural Gas Industry, 2012, 32(7): 12–14. doi: 10.3787/j.issn.1000-0976.2012.07.003

    [14] 李勇明,陈曦宇,赵金洲,等. 射孔孔眼磨蚀对分段压裂裂缝扩展的影响[J]. 天然气工业, 2017, 37(7): 52–59. doi: 10.3787/j.issn.1000-0976.2017.07.008

    LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing[J]. Natural Gas Industry, 2017, 37(7): 52–59. doi: 10.3787/j.issn.1000-0976.2017.07.008

    [15] 谢军. 关键技术进步促进页岩气产业快速发展:以长宁—威远国家级页岩气示范区为例[J]. 天然气工业, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001

    XIE Jun. Rapid shale gas development accelerated by the progress in key technologies: a case study of the Changning–Weiyuan National Shale Gas Demonstration Zone[J]. Natural Gas Industry, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001

    [16] 刘厚彬,孟英峰,李皋,等. 泥页岩水化作用对岩石强度的影响[J]. 钻采工艺, 2010, 33(6): 18–20.

    LIU Houbin, MENG Yingfeng, LI Gao, et al. Theoretical simulation and experimental evaluation of the effect of hydration on the shale rock strength[J]. Drilling & Production Technology, 2010, 33(6): 18–20.

    [17] 陈铭,张士诚,柳明,等. 水力压裂支撑剂嵌入深度计算方法[J]. 石油勘探与开发, 2018, 45(1): 149–156.

    CHEN Ming, ZHANG Shicheng, LIU Ming, et al. Calculation method of proppant embedment depth in hydraulic fracturing[J]. Petroleum Exploration and Development, 2018, 45(1): 149–156.

  • 期刊类型引用(16)

    1. 熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 . 百度学术
    2. 景东阳,李治平,韩瑞刚. 致密储层水力压裂裂缝几何形态地质影响因素及控制方法. 科学技术与工程. 2022(21): 9129-9136 . 百度学术
    3. 王明星,纪大刚,袁峰,王健,马新仿,邹雨时,张兆鹏. 多岩性储集层暂堵压裂缝高扩展特征试验研究. 科学技术与工程. 2022(24): 10534-10543 . 百度学术
    4. 杨琦,张红杰,王春鹏,梅文博,杨帆,毛峥. 煤系地层致密砂岩压裂技术可行性研究. 当代化工. 2021(09): 2176-2181 . 百度学术
    5. 宋景远,姚谋,景文平,刘圣战,毛冠华,张恒,季长伟. 环江油田巴19区块长7段钙夹层评价与大斜度井分段压裂优化. 钻探工程. 2021(10): 29-35 . 百度学术
    6. 李明辉,周福建,胡晓东,张路锋,王博. 大斜度井多簇水力压裂裂缝扩展数值模拟. 科学技术与工程. 2020(28): 11555-11561 . 百度学术
    7. 甄怀宾,张伟强,吴飞鹏,孙伟,朱卫平. 煤层水力压裂影响因素数值模拟研究. 非常规油气. 2020(06): 101-106 . 百度学术
    8. 兰天庆,胡泊洲,董文楠,张昕. 砂煤岩互层水力裂缝扩展规律的数值模拟研究. 能源与环保. 2018(10): 38-44+49 . 百度学术
    9. 李保林. 浅析影响盐间页岩油藏压裂施工及返排特征的关键因素. 江汉石油职工大学学报. 2018(06): 18-21 . 百度学术
    10. 李扬,邓金根,刘伟,闫伟,曹文科,王鹏飞. 水平井分段多簇限流压裂数值模拟. 断块油气田. 2017(01): 69-73 . 百度学术
    11. 吴晓光,李阳兵,章文达,王志文,刘丽珍,姜力,李成荫. 利用横波各向异性评价含煤页岩气储层压裂缝高度——以新场地区须家河组五段为例. 工程地球物理学报. 2017(04): 468-474 . 百度学术
    12. 吴锐,邓金根,蔚宝华,刘伟,李扬,李明,彭成勇. 临兴区块石盒子组致密砂岩气储层压裂缝高控制数值模拟研究. 煤炭学报. 2017(09): 2393-2401 . 百度学术
    13. 谷文彬,裴玉彬,赵安军,王涛,蔡军,吴凯凯. 人工隔层技术在控缝高压裂井中的应用. 石油钻采工艺. 2017(05): 646-651 . 百度学术
    14. 许定江,练章华,林铁军,邓子麒. ABAQUS软件在油气井工程中的应用及分析. 断块油气田. 2016(04): 518-522 . 百度学术
    15. 李建雄,刘茂林,郭天魁,刘晓强,李小龙. 径向井引导水力裂缝扩展机理. 断块油气田. 2016(06): 803-806 . 百度学术
    16. 刘雨,艾池. 多级压裂诱导应力作用下天然裂缝开启规律研究. 石油钻探技术. 2015(01): 20-26 . 本站查看

    其他类型引用(25)

图(6)  /  表(6)
计量
  • 文章访问数:  1359
  • HTML全文浏览量:  621
  • PDF下载量:  208
  • 被引次数: 41
出版历程
  • 收稿日期:  2019-08-19
  • 修回日期:  2020-06-15
  • 网络出版日期:  2020-07-02
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回