致密/页岩油气储层损害机理与保护技术研究进展及发展建议

孙金声, 许成元, 康毅力, 张洁

孙金声, 许成元, 康毅力, 张洁. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
引用本文: 孙金声, 许成元, 康毅力, 张洁. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
SUN Jinsheng, XU Chengyuan, KANG Yili, ZHANG Jie. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068
Citation: SUN Jinsheng, XU Chengyuan, KANG Yili, ZHANG Jie. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 1-10. DOI: 10.11911/syztjs.2020068

致密/页岩油气储层损害机理与保护技术研究进展及发展建议

基金项目: 国家自然科学基金-石油化工联合基金(A类)重点基金项目“超深井安全高效井筒工作液构建及调控方法基础研究”(编号:U1762212),国家自然科学基金项目“基于逾渗和固液两相流理论的裂缝性储层工作液漏失损害预测与控制”(编号:51604236)和四川省科技计划项目“保护储层并改善优势天然裂缝导流能力的钻井预撑裂缝堵漏基础研究”(编号:2018JY0436)联合资助
详细信息
    作者简介:

    孙金声(1965—),男,江西于都人,1985年毕业于江西师范大学化学专业,1988年获南开大学有机化学专业硕士学位,2006年获西南石油大学应用化学博士学位,中国工程院院士,教授,博士生导师,主要从事钻井液、储层保护理论与技术等研究工作。系本刊编委。E-mail:sunjinsheng1965@sina.com

  • 中图分类号: TE 258

Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs

  • 摘要:

    致密/页岩油气藏赋存地质条件独特,通常采用水平井加分段压裂技术进行开发,但油气井初期产量差异大且递减快,而钻井完井及增产改造中的储层损害是重要原因。如何降低致密/页岩油气藏勘探开发各环节的储层损害,提高单井产量与稳产周期,实现经济高效开发,是目前亟待解决的重大科学问题。为此,在分析致密/页岩油气储层损害特点的基础上,总结了钻井完井、增产改造与开发生产过程中致密/页岩油气储层损害的主要机理,介绍了物理颗粒暂堵、化学成膜暂堵、欠平衡钻井完井和界面修饰等储层保护技术的基本原理及研究进展,以典型案例阐述了储层保护技术对及时发现、准确评价和高效开发致密/页岩油气资源的重要作用,并指出储层损害预测与诊断系统、储层多尺度损害评价方法、智能型储层保护材料、液相圈闭损害防治措施和储层保护–漏失控制–增渗改造一体化技术是致密/页岩油气储层保护的重要发展方向。

    Abstract:

    Tight and shale oil and gas reservoirs demonstrate unique geological characteristics such as extremely poor storage-flow quality, and multi-scale structure of storage and flow space. Those reservoirs are normally developed with staged fracturing of horizontal wells, which is made quite challenging by obviously different initial production rates and rapid declines. Further, uncertainty over the technical effects of drilling/completion and stimulation are significantly different. Currently, the major scientific issues that urgently need to be resolved include the requirement to reduce reservoir damage at all the exploration and development stages, to increase well production and stable production cycle, and to achieve economic and efficient development. Through the damage characteristics analysis of such reservoirs, and the main damage mechanisms summary during drilling/completion, stimulation and production, this paper introduces the basic principles and research progress of reservoir protection technologies such as the temporary plugging of physical particles and chemical filming, underbalanced drilling and completion, and interface modification, etc. The importance of damage prevention technologies in the timely discovery of tight/shale oil and gas reservoirs, correct evaluation and efficient development is elaborated with case studies. This paper also points out that integrated techniques in reservoir damage prediction and diagnosis system, multi-scale damage evaluation method, intelligent reservoir protection materials, liquid trap damage prevention measures, and reservoir protection-leakage control-permeability enhancement will be the important development trends in tight/shale oil and gas reservoir protection in the future.

  • 图  1   油气井产量与油气储层钻开液漏失量的统计结果

    Figure  1.   Statistical results of drill-in fluid loss volume and well production

    图  2   美国Barnett页岩水相圈闭损害评价结果[30]

    Figure  2.   Evaluation results of water traps in Barnett shale in the United States[30]

    图  3   美国Berea致密砂岩水相圈闭损害评价结果[31]

    Figure  3.   Evaluation results of water traps in Berea tight sandstone in the United States[31]

    图  4   压裂返排液驱替后岩样裂缝面残留固相与结晶盐[39]

    Figure  4.   Residual solid phase and crystalline salt on the fracture surface of rock sample after post-fracturing cleanup[39]

    图  5   国内外页岩储层岩样应力敏感性统计结果[42]

    Figure  5.   Statistics on the stress sensitivity of shale reservoir samples at home and abroad[42]

    图  6   压裂液浸泡时间对页岩强度的影响[42]

    Figure  6.   Impact of fracturing fluid immersion time on shale strength[42]

    图  7   不同初始含水饱和度下致密砂岩盐析前后孔隙度/渗透率降幅[46]

    Figure  7.   Porosity/permeability decreases before and after salting out of tight sandstone at different initial water saturations[46]

    图  8   大牛地气田储层保护前后气层测井解释结果对比

    Figure  8.   Comparison of logging interpretation results in Dani-udi Gas Field before and after reservoir protection

    图  9   加拿大Bakken盆地致密油气藏欠平衡钻井储层保护试验井与非试验井对比[68]

    Figure  9.   Comparison of underbalanced drilling reservoir protection test wells and non-test wells in tight oil and gas reservoirs of Bakken Basin, Canada[68]

    图  10   储层保护压裂液体系提高气井产量和稳产期[28]

    Figure  10.   Production increase and stabilize production periodof reservoir protection fracturing fluid system[28]

    表  1   大牛地致密砂岩气藏储层保护效果[34]

    Table  1   Protection effect in Daniudi tight sandstone gas reservoir[34]

    井号测试层位测试产量/(104m3·d–1备注
    D7石盒子组3段3.17非试验井
    D104.04非试验井
    D1521.08试验井
    DK238.87试验井
    D8山西组2段1.54非试验井
    D90.24非试验井
    D122.31试验井
    D137.03试验井
     注:气井均采用水平井加砂压裂+液氮伴注的投产方式。
    下载: 导出CSV

    表  2   塔里木盆地克深区块超深致密砂岩气藏储层保护效果[55]

    Table  2   Protection effect of ultra-deep tight sandstone gas reservoirs in Keshen Block, Tarim Basin[55]

    井号测试井段/m钻井液漏
    失量/m3
    测试产气量/
    (104m3·d–1)
    备注
    KS9077 509.00~7 635.003.4094.87试验井
    KS9057 540.00~7 720.0013.9096.64试验井
    KS9017 910.00~7 930.00242.40 0.74非试验井
    KS9027 810.00~7 812.0055.0045.66非试验井
    KS9037 559.00~7 641.20222.41 63.44非试验井
    KS9047 710.00~7 780.00309.80 11.96非试验井
    下载: 导出CSV

    表  3   化学成膜与物理暂堵技术协同保护储层效果[65]

    Table  3   The reservoir protection effects of chemical filming and physical temporary plugging technologies[65]

    井号油气层
    厚度/m
    油气井米采油指数/
    (m3·m−1·MPa−1)
    增产
    倍数
    备注
    中30-斜更53310.50.09522.11试验井
    中31-更533 7.30.4520非试验井
    中32-斜53315.00.58001.28试验井
    中31-斜533 7.30.4520非试验井
    中30-斜更52819.10.73308.63试验井
    中31-斜52915.30.0850非试验井
    下载: 导出CSV

    表  4   四川盆地邛西构造须2段致密砂岩气藏储层保护效果

    Table  4   Protection effect of Xu 2 tight sandstone gas reservoir in Qiongxi structure, Sichuan Basin

    井号井深/m完井方式测试产量/(104m3·d–1)钻井方法
    邛西14 450射孔完井 0.07常规过平衡
    邛西23 900加砂压裂 0.52
    邛西33 572先期裸眼45.67全过程欠平衡
    邛西43 852衬管完井89.34
    下载: 导出CSV
  • [1] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1–12. doi: 10.1038/s41401-019-0299-4

    ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1–12. doi: 10.1038/s41401-019-0299-4

    [2] 邹才能,潘松圻,赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416–426.

    ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challen-ges and significance of China’s“energy independence”strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416–426.

    [3] 罗平亚,康毅力,孟英峰. 我国储层保护技术实现跨越式发展[J]. 天然气工业, 2006, 26(1): 84–87.

    LUO Pingya, KANG Yili, MENG Yingfeng. China’s reservoir protection technologies develop in leaps[J]. Natural Gas Industry, 2006, 26(1): 84–87.

    [4]

    ZHANG Dujie, KANG Yili, YOU Lijun, et al. Investigation of formation damage induced during drill-in process of ultra-deep fractured tight sandstone gas reservoirs[J]. Journal of Energy Resources Technology, 2018, 141(7): 1–11.

    [5] 康毅力,罗平亚. 中国致密砂岩气藏勘探开发关键工程技术现状与展望[J]. 石油勘探与开发, 2007, 34(2): 239–245.

    KANG Yili, LUO Pingya. Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China[J]. Petroleum Exploration and Development, 2007, 34(2): 239–245.

    [6]

    BENNION D B. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations[J]. Journal of Canadian Petroleum Technology, 2002, 44(11): 29–36.

    [7]

    XU Chengyuan, KANG Yili, YOU Zhenjiang, et al. Review on formation damage mechanisms and processes in shale gas reservoir: known and to be known[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1208–1219. doi: 10.1016/j.jngse.2016.03.096

    [8] 徐同台, 熊友明, 康毅力.保护油气层技术[M].3版.北京: 石油工业出版社, 2010.

    XU Tongtai, XIONG Youming, KANG Yili. Technology for protecting oil and gas layers[M]. 3rd ed. Beijing: Petroleum Industry Press, 2010.

    [9]

    CIVAN F. Reservoir formation damage[M]. 2nd ed. London: Gulf Professional Publishing, 2015.

    [10] 康毅力,罗平亚. 储层保护系统工程:实践与认识[J]. 钻井液与完井液, 2007, 24(1): 1–7.

    KANG Yili, LUO Pingya. System engineering of reservoir preservation: practice and theory[J]. Drilling Fluid & Completion Fluid, 2007, 24(1): 1–7.

    [11]

    KANG Yili, XU Chengyuan, YOU Lijun, et al. Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 18: 353–359. doi: 10.1016/j.jngse.2014.03.016

    [12]

    WANG Hanyi. What factors control shale-gas production and production-decline trend in fractured systems: a comprehensive analysis and investigation[J]. SPE Journal, 2017, 22(2): 562–581. doi: 10.2118/179967-PA

    [13]

    CUI Q, ABASS H H. Experimental study of permeability decline in tight formations during long-term depletion[R]. SPE 180257, 2016.

    [14]

    LIANG Tianbo, GU Fuyang, YAO Erdong, et al. Formation damage due to drilling and fracturing fluids and its solution for tight naturally fractured sandstone reservoirs[J/OL]. Geofluids, 2017[2020-03-20]. https://doi.org/10.1155/2017/9350967.

    [15] 黄维安,邱正松,岳星辰,等. 页岩气储层损害机制及保护水基钻完井液技术[J]. 中国石油大学学报(自然科学版), 2014, 38(3): 99–105.

    HUANG Weian, QIU Zhengsong, YUE Xingchen, et al. Damage mechanism and water-based drilling fluid protection technology for shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(3): 99–105.

    [16]

    RAHMAN M K, SUAREZ Y A, CHEN Z, et al. Unsuccessful hydraulic fracturing cases in Australia: investigation into causes of failures and their remedies[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 70–81. doi: 10.1016/j.petrol.2005.07.009

    [17] 康毅力,杨斌,游利军,等. 油基钻井完井液对页岩储层保护能力评价[J]. 天然气工业, 2013, 33(12): 99–104.

    KANG Yili, YANG Bin, YOU Lijun, et al. Damage evaluation of oil-based drill-in fluids to shale reservoirs[J]. Natural Gas Industry, 2013, 33(12): 99–104.

    [18]

    XU Chengyuan, KANG Yili, YOU Lijun, et al. Lost-circulation control for formation-damage prevention in naturally fractured reservoir: mathematical model and experimental study[J]. SPE Journal, 2017, 22(5): 1654–1670. doi: 10.2118/182266-PA

    [19] 许成元,闫霄鹏,康毅力,等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发, 2020, 47(2): 399–408.

    XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 399–408.

    [20]

    XU Chengyuan, YOU Zhenjiang, KANG Yili, et al. Stochastic modelling of particulate suspension transport for formation damage prediction in fractured tight reservoir[J]. Fuel, 2018, 221: 476–490. doi: 10.1016/j.fuel.2018.02.056

    [21] 许成元,康毅力,游利军,等. 裂缝性储层渗透率返排恢复率的影响因素[J]. 石油钻探技术, 2012, 40(6): 17–21.

    XU Chengyuan, KANG Yili, YOU Lijun, et al. Influential factors on permeability recovery during flowback of fractured reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(6): 17–21.

    [22]

    ZHANG Dujie, KANG Yili, SELVADURAI A P S, et al. The role of phase trapping on permeability reduction in an ultra-deep tight sandstone gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 178: 311–323. doi: 10.1016/j.petrol.2019.03.045

    [23]

    ZHANG Hao, ZHONG Ying, KURU E, et al. Impacts of permeability stress sensitivity and aqueous phase trapping on the tight sandstone gas well productivity: a case study of the Daniudi Gas Field[J]. Journal of Petroleum Science and Engineering, 2019, 177: 261–269. doi: 10.1016/j.petrol.2019.02.044

    [24] 张涛,李相方,王永辉,等. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828–838.

    ZHANG Tao, LI Xiangfang, WANG Yonghui, et al. Study on the effect of gas-shale reservoir special properties on the fracturing fluidrecovery efficiency and production performance[J]. Natural Gas Geoscience, 2017, 28(6): 828–838.

    [25] 刘乃震,柳明,张士诚. 页岩气井压后返排规律[J]. 天然气工业, 2015, 35(3): 50–54.

    LIU Naizhen, LIU Ming, ZHANG Shicheng. Flowback patterns of fractured shale gas wells[J]. Natural Gas Industry, 2015, 35(3): 50–54.

    [26]

    GHANBARI E, ABBASI M A, DEHGHANPOUR H, et al. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production[R]. SPE 167165, 2013.

    [27]

    MIRZAEI-PAIAMAN A, MASIHI M, MOGHADASI J. Formation damage through aqueous phase trapping: a review of the evaluating methods[J]. Petroleum Science and Technology, 2011, 29(11): 1187–1196. doi: 10.1080/10916460903551073

    [28]

    PHAN T, KAZEMPOUR M, NGUYEN D, et al. Treating liquid banking problem to increase shale gas wells productivity[R]. SPE 189523, 2018.

    [29]

    PENG Yan, QU Hongyan, LIU Jishan, et al. Impact of fluid adsorption on geomechanical properties of shale gas reservoir and shale gas recovery rate[R]. ARMA-2018-342, 2018.

    [30]

    ZHANG Junjing, OUYANG Liangchen, ZHU Ding, et al. Experimental and numerical studies of reduced fracture conductivity due to proppant embedment in the shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2015, 130: 37–45. doi: 10.1016/j.petrol.2015.04.004

    [31]

    ZHANG Junjing, ZHU Ding, HILL A D. Water-induced damage to propped-fracture conductivity in shale formations[J]. SPE Production & Operations, 2016, 31(2): 334–343.

    [32]

    SABOORIAN-JOOYBARI H, POURAFSHARY P. Potential severity of phase trapping in petroleum reservoirs: an analytical approach to prediction[J]. SPE Journal, 2017, 22(3): 863–874. doi: 10.2118/183631-PA

    [33]

    BAHRAMI H, REZAEE R, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 100–106. doi: 10.1016/j.petrol.2012.04.002

    [34]

    YOU Lijun, KANG Yili. Integrated evaluation of water phase trapping damage potential in tight gas reservoirs[R]. SPE 122034, 2009.

    [35]

    PAGELS M, WILLBERG D M, EDELMAN E, et al. Quantifying fracturing fluid damage on reservoir rock to optimize production[R]. SPE 1578948, 2013.

    [36]

    DING D Y, LANGOUËT H, JEANNIN L. Simulation of fracturing-induced formation damage and gas production from fractured wells in tight gas reservoirs[R]. SPE Production & Operations, 2013, 28(3): 13-22.

    [37]

    ZOLFAGHARI A, DEHGHANPOUR H, NOEL M, et al. Laboratory and field analysis of flowback water from gas shales[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 113–127. doi: 10.1016/j.juogr.2016.03.004

    [38]

    NICOT J P, SCANLON B R, REEDY R C, et al. Source and fate of hydraulic fracturing water in the Barnett shale: a historical perspective[J]. Environmental Science & Technology, 2014, 48(4): 2464–2471.

    [39] 游利军,谢本彬,杨建,等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018, 38(12): 61–69.

    YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61–69.

    [40]

    YANG Bin, ZHANG Hao, KANG Yili. In situ sequestration of a hydraulic fracturing fluid in Longmaxi shale gas formation in the Sichuan Basin[R]. Energy & Fuels, 2019, 33(8): 6983–6994.

    [41]

    XU Chengyuan, LIN Chong, KANG Yili, et al. An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression: characteristics, mechanisms and controlling factors[J]. Rock Mechanics and Rock Engineering, 2018, 51: 2321–2338. doi: 10.1007/s00603-018-1481-6

    [42]

    BAI Jiajia, KANG Yili, CHEN Zhangxin, et al. Changes in retained fracturing fluid properties and their effect on shale mechanical properties[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 1–12.

    [43] 唐建新, 腾俊洋, 张闯, 等. 层状含水页岩蠕变特性试验研究[J].岩土力学, 2018, 39(增刊1):33–41.

    TANG Jianxin, TENG Junyang, ZHANG Chuang, et al. Experimental study on creep characteristics of layered water bearing shale[J]. Rock and Soil Mechanics, 2018, 39(supplement 1): 33–41.

    [44]

    CHEN Tianyu, FENG Xiating, CUI Guanglei, et al. Experimental study of permeability change of organic-rich gas shales under high effective stress[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 1–14. doi: 10.1016/j.jngse.2019.01.014

    [45]

    SLIM M, HOFMANN R, SAXENA N, et al. Impact of mineralogy on creep properties and production decline rates[R].ARMA-2019-2065, 2019.

    [46]

    ZHANG Dujie, KANG Yili, YOU Lijun, et al. Investigation of multi-scale approach for damage control in ultra-deep tight sandstone gas reservoirs based on the multi-scale formation damage mechanisms[R]. IPTC 19254, 2019.

    [47] 罗向东,罗平亚. 屏蔽式暂堵技术在储层保护中的应用研究[J]. 钻井液与完井液, 1992, 9(2): 19–27.

    LUO Xiangdong, LUO Pingya. Protecting oil reservoir with temporary shielding method[J]. Drilling Fluid & Completion Fluid, 1992, 9(2): 19–27.

    [48] 蒋官澄,鄢捷年,王富华,等. 新型屏蔽暂堵技术在大宛齐地区的应用[J]. 石油钻探技术, 1999, 27(6): 21–23.

    JIANG Guancheng, YAN Jienian, WANG Fuhua, et al. Applications of temporary plugging techniques in Dawanqi Area[J]. Petroleum Drilling Techniques, 1999, 27(6): 21–23.

    [49] 蒋官澄,胡成亮,熊英,等. 广谱“油膜”暂堵钻井液体系研究[J]. 中国石油大学学报(自然科学版), 2006, 30(4): 53–57.

    JIANG Guancheng, HU Chengliang, XIONG Ying, et al. Study on system of broad-spectrum oil-film temporary plugging drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2006, 30(4): 53–57.

    [50] 李志勇,鄢捷年,王友兵,等. 保护储层钻井液优化设计新方法及其应用[J]. 钻采工艺, 2006, 29(2): 85–87.

    LI Zhiyong, YAN Jienian, WANG Youbing, et al. New optimized design method and application of drilling fluid used for formation damage control[J]. Drilling & Production Technology, 2006, 29(2): 85–87.

    [51] 鄢捷年,赵胜英,王兆霖,等. 理想充填油气层保护技术在青海油田深探井中的应用[J]. 石油钻探技术, 2007, 35(4): 53–55.

    YAN Jienian, ZHAO Shengying, WANG Zhaolin, et al. Application of formation damage control technology based on ideal packingtheory to deep exploration wells in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2007, 35(4): 53–55.

    [52] 吕开河,邱正松,王在明. 自适应屏蔽暂堵钻井液技术[J]. 中国石油大学学报(自然科学版), 2008, 32(2): 68–71.

    LV Kaihe, QIU Zhengsong, WANG Zaiming. Techniques of auto-adapting shielding and temporary plugging drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(2): 68–71.

    [53]

    KANG Yili, XU Chengyuan, YOU Lijun, et al. Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J]. Journal of Natural GasScience and Engineering, 2014, 20: 67–73. doi: 10.1016/j.jngse.2014.06.016

    [54] 闫丰明,康毅力,孙凯,等. 裂缝–孔洞型碳酸盐岩储层暂堵性堵漏机理研究[J]. 石油钻探技术, 2011, 39(2): 81–85.

    YAN Fengming, KANG Yili, SUN Kai, et al. Mechanism oftemporary sealing for fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2011, 39(2): 81–85.

    [55]

    SELVADURAI A P S, ZHANG Dujie, KANG Yili. Permeability evolution in natural fractures and their potential influence on loss of productivity in ultra-deep gas reservoirs of the Tarim Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 162–177. doi: 10.1016/j.jngse.2018.07.026

    [56] 朱金智,游利军,李家学,等. 油基钻井液对超深裂缝性致密砂岩气藏的保护能力评价[J]. 天然气工业, 2017, 37(2): 62–68.

    ZHU Jinzhi, YOU Lijun, LI Jiaxue, et al. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs[J]. Natural Gas Industry, 2017, 37(2): 62–68.

    [57] 蒋官澄,马先平,纪朝凤,等. 广谱“油膜”暂堵剂在油层保护技术中的应用[J]. 应用化学, 2007, 24(6): 665–669.

    JIANG Guancheng, MA Xianping, JI Chaofeng, et al. Application of a broad-spectrum oil-film temporary plugging agent to reservoir protection[J]. Chinese Journal of Applied Chemistry, 2007, 24(6): 665–669.

    [58] 孙金生.水基钻井液成膜技术研究[D].成都: 西南石油大学, 2006.

    SUN Jinsheng. Research on film-forming technology of water-based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2006.

    [59] 王伟吉,邱正松,暴丹,等. 温压成膜封堵技术研究及应用[J]. 特种油气藏, 2015, 22(1): 144–147.

    WANG Weiji, QIU Zhengsong, BAO Dan, et al. Warm-compaction film-forming plugging and its application[J]. Special Oil & Gas Reservoirs, 2015, 22(1): 144–147.

    [60] 袁春,孙金声,王平全,等. 抗高温成膜降滤失剂CMJ-1的研制及其性能[J]. 石油钻探技术, 2004, 32(2): 30–32.

    YUAN Chun, SUN Jinsheng, WANG Pingquan, et al. Development of CMJ-1: a high temperature film-forming fluid loss additive and the properties[J]. Petroleum Drilling Techniques, 2004, 32(2): 30–32.

    [61] 蒋官澄,毛蕴才,周宝义,等. 暂堵型保护油气层钻井液技术研究进展与发展趋势[J]. 钻井液与完井液, 2018, 35(2): 1–16.

    JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al. Progress made and trend of development in studying on temporarily type plugging reservoir protection drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 1–16.

    [62]

    MOHAMMADI M K, NOWTARKI K T, GHALAMBOR A. Successful application of non-damaging drill-in-fluids proves oil production improvement in heavy oil reservoirs[R]. SPE 199326, 2020.

    [63] 孙金声,苏义脑,罗平亚,等. 超低渗透钻井液提高地层承压能力机理研究[J]. 钻井液与完井液, 2005, 22(5): 1–3.

    SUN Jinsheng, SU Yinao, LUO Pingya, et al. Mechanism study on ultra-low invasion drilling fluid for improvement of formation pressure-bearing ability[J]. Drilling Fluid & Completion Fluid, 2005, 22(5): 1–3.

    [64] 孙金声,唐继平,张斌,等. 几种超低渗透钻井液性能测试方法[J]. 石油钻探技术, 2005, 33(6): 25–27.

    SUN Jinsheng, TANG Jiping, ZHANG Bin, et al. Methods for testing properties of ultra-low permeable drilling fluid[J]. Petroleum Drilling Techniques, 2005, 33(6): 25–27.

    [65]

    JIANG Guancheng, XUAN Yang, WU Xianzhu, et al. Method for preparation of biomimetic polymer for stabilizing wellbore and drilling fluid: US9410068[P]. 2016-08-09.

    [66] 谢晓永,孟英峰,唐洪明,等. 裂缝性低渗砂岩气藏水基钻井液欠平衡钻井储层保护[J]. 石油钻探技术, 2008, 36(5): 51–53.

    XIE Xiaoyong, MENG Yingfeng, TANG Hongming, et al. Underbalanced water based mud to protect fractured tight sandstone gas reservoirs[J]. Petroleum Drilling Techniques, 2008, 36(5): 51–53.

    [67] 胡进科,李皋,孟英峰. 页岩气钻井过程中的储层保护[J]. 天然气工业, 2012, 32(12): 66–70.

    HU Jinke, LI Gao, MENG Yingfeng. Reservoir protection in the process of shale gas drilling[J]. Natural Gas Industry, 2012, 32(12): 66–70.

    [68] 李皋,孟英峰,钟水清,等. MRC井与UBD相结合的技术潜力研究[J]. 钻采工艺, 2010, 33(1): 28–30.

    LI Gao, MENG Yingfeng, ZHONG Shuiqing, et al. Technical research on combination of MRC well and UBD technology[J]. Drilling & Production Technology, 2010, 33(1): 28–30.

    [69] 刘雪芬,康毅力,罗平亚,等. 界面修饰对致密砂岩气藏微孔系统渗流的调控[J]. 油田化学, 2015, 32(1): 137–140.

    LIU Xuefen, KANG Yili, LUO Pingya, et al. Seepage regulation of micro-pore system in tight sandstone gas reservoirs by interfacial modification[J]. Oilfield Chemistry, 2015, 32(1): 137–140.

    [70] 刘雪芬,康毅力,罗平亚,等. 氟化物对致密砂岩气体渗流能力的影响[J]. 石油学报, 2015, 36(8): 995–1003.

    LIU Xuefen, KANG Yili, LUO Pingya, et al. Impact of fluoride on seepage ability of tight sandstone[J]. Acta Petrolei Sinica, 2015, 36(8): 995–1003.

    [71] 蒋官澄, 张县民, 王乐, 等.双阳离子氟碳表面活性剂及其制备方法和作为双疏型润湿反转剂的应用和钻井液及其应用: CN201710038133.1[P].2018-02-06.

    JIANG Guancheng, ZHANG Xianmin, WANG Le, et al. Double cation fluorocarbon surfactant and its preparation method and application as a double-phobic wetting inversion agent and drilling fluid and its application: CN201710038133.1[P]. 2018-02-06.

  • 期刊类型引用(24)

    1. 高元,李小江,刘仍光. 超高温井固井水泥浆体系研究与应用. 钻探工程. 2025(01): 109-114 . 百度学术
    2. 李小江,王越洋,肖京男,魏浩光,杨睿月. 硅酸盐水泥石超高温干热环境热损伤规律. 钻井液与完井液. 2025(02): 247-254 . 百度学术
    3. 李盼盼,李明泽,徐萍,白永泰,吕宝玉,王璐. 石英砂细度和掺量对G级油井水泥浆体系性能的影响. 水泥. 2024(01): 14-17 . 百度学术
    4. 肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 . 百度学术
    5. 邱康,崔强,熊振宇,王颖,范鸿飞. 莺琼盆地高温高含CO_2环境水泥石腐蚀规律及机理研究. 海洋石油. 2024(02): 80-83 . 百度学术
    6. 赵峰,曾雪玲,龙丹,古安林,张凌志,王佳,魏雪琦. 锆英石掺量对加砂油井水泥高温性能的影响研究. 水泥. 2024(07): 13-18 . 百度学术
    7. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 . 百度学术
    8. 赵琥,马春旭,宋维凯,田野,邹亦玮,孙超. 空心微珠低密度水泥浆在高温下的水化特性. 钻井液与完井液. 2024(05): 654-660 . 百度学术
    9. 袁彬,赵清立,徐璧华,冯青豪,杨川. 南海180℃超高温CO_2环境下水泥石强度衰退机理. 材料导报. 2024(S2): 170-174 . 百度学术
    10. 赵昆鹏,王涛,郭春,罗阳利,韦庭丛,梅开元,张春梅,赵峰,程小伟. 高温下赤泥与硅粉协同强化固井水泥石力学性能. 中国粉体技术. 2023(02): 74-80 . 百度学术
    11. 徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 . 百度学术
    12. 党冬红,刘宁泽,王丹,梅开元,程小伟,孙兴嘉. 干热岩工况下水泥高温劣化性能的调控措施. 钻井液与完井液. 2023(03): 368-375 . 百度学术
    13. 赵峰,曾雪玲,龙丹,古安林,喻庆华. 超高温固井水泥添加剂研选及工程性能评价. 钻采工艺. 2023(04): 131-136 . 百度学术
    14. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 . 百度学术
    15. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    16. 侯海欧. 稠油热采井固井低密度水泥浆体系研究与应用. 中国石油和化工标准与质量. 2022(07): 111-113 . 百度学术
    17. 周崇峰,费中明,李德伟,赵江波,蒋世伟,刘慧婷,徐明. 一种新型超高温固井水泥石抗强度衰退材料. 钻井液与完井液. 2022(01): 71-75 . 百度学术
    18. 郤一臻,赵福金,荆京,祁国华,张勃. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程. 2022(06): 42-47 . 百度学术
    19. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
    20. 李全双,王治国,邹书强. 适用于干热岩固井抗高温高强度水泥浆体系研究. 中国石油和化工标准与质量. 2020(10): 164-167+169 . 百度学术
    21. 张华,靳建洲,刘明涛,肖云峰,张晓兵,郭锦棠,张同颖. 稠油热采井抗350℃高温硅酸盐基水泥浆. 钻井液与完井液. 2020(03): 363-366 . 百度学术
    22. 耿晨梓,姚晓,代丹,黎学年,姜涛,闫联国,吴学超. SiO_2晶态物性对高温水泥石力学性能的影响. 钻井液与完井液. 2020(06): 777-783 . 百度学术
    23. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 . 百度学术
    24. 马志亮,郝红永,谢志涛,翟晓鹏,张瀚之. 微硅砂含量对热采井固井水泥强度影响研究. 当代化工研究. 2019(09): 72-74 . 百度学术

    其他类型引用(6)

图(10)  /  表(4)
计量
  • 文章访问数:  1580
  • HTML全文浏览量:  457
  • PDF下载量:  238
  • 被引次数: 30
出版历程
  • 收稿日期:  2020-05-06
  • 网络出版日期:  2020-06-21
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回