Development of an Anti-Deformation Cement Slurry under Alternative Loading and Its Application in Fuling Shale Gas Wells
-
摘要:
针对页岩气井普遍存在的套管环空带压问题,从提高固井水泥环长久密封完整性角度出发,研制了具有钢筋混凝土力学性能的絮状弹韧性材料DeForm,并以其为基础配制了一种适应页岩气井大型分段压裂的抗高交变载荷水泥浆。室内性能评价试验结果表明,该水泥浆具有优良的弹韧性和耐久性,可有效提高水泥环的抗交变载荷能力,实现水泥环与套管的同步形变,保证井筒的长久密封完整性。该水泥浆在涪陵页岩气田9口井进行了现场应用,固井优质率达到88.9%,套管环空带压率为0,效果非常显著,为预防页岩气井套管环空带压提供了新的技术途径。
Abstract:To sustain casing pressure in shale gas wells, a flocculent elastic material DeForm with the function like rebar in concrete was developed with the goal of improving the long-term sealing integrity of the cement sheath. Using DeForm as the basis of its chemical composition, an anti-deformation cement slurry under alternative loading suitable for large scale staged fracturing in shale gas well was prepared. The indoor performance evaluation results demonstrated that the system has excellent elastic toughness and durability, which can effectively improve the ability of cement sheath to resist alternative loading, to bring about synchronous deformation of casing and cement sheath and to ensure the long-term sealing integrity of wellbore. This cement slurry system has been successfully applied in 9 wells in the Fuling Shale Gas Field, with excellent cement job rating 88.9% and no sustained pressure in casing annulus. With such remarkable application results, the cement slurry will provide a new way in preventing sustained casing pressure in shale gas wells.
-
Keywords:
- alternative loading /
- cement slurry /
- shale gas well /
- sealing integrity /
- Fuling Shale Gas Field
-
-
表 1 水泥石力学性能测试结果
Table 1 Test results of mechanical property of cement stone
测试项目 测试条件 48 h抗压强度/MPa 弹性模量/GPa 泊松比 弹性模量降低率,% 常规材料 75 ℃×0.1 MPa× 48 h 40.368 8.896 0.208 橡胶粉 38.483 7.282 0.219 18.14 DeForm 34.422 5.425 0.264 39.02 表 2 抗高交变载荷水泥石力学特性试验条件及结果
Table 2 Experimental condition and results of mechanical property of anti-deformation cement stone under alternative loading
DeForm加量,% 围压/MPa 差应力/MPa 弹性模量/GPa 泊松比 2.0 15 67.637 6.461 0.219 2.5 66.434 6.019 0.232 3.0 53.008 5.580 0.275 表 3 抗高交变载荷水泥浆温度敏感性试验结果
Table 3 Test results of temperature sensibility of anti-deformationcement slurry under alternative loading
温度/
℃30 Bc稠化时间/
min100 Bc稠化时间/
min稠化过渡时间/
min80 128 136 8 90 106 116 10 100 90 97 7 表 4 抗高交变载荷水泥浆密度敏感性试验结果
Table 4 Test results of density sensibility of anti-deformationcement slurry under alternative loading
试验温度/
℃密度/
(kg·L–1)30 Bc稠化
时间/min100 Bc稠化
时间/min稠化过渡
时间/min90 1.91 121 127 6 1.88 135 140 5 1.85 148 155 7 表 5 抗高交变载荷水泥浆相容性试验结果
Table 5 Compatibility test results of anti-deformation cement slurry under alternative loading
序号 入井流体占比,% 六速旋转黏度计读数 相容性判定 水泥浆 前置液 油基钻井液 常温 90 ℃ 1 100 >300/298/218/128/14/10 292/190/134/77/9/7 2 100 107/72/58/41/16/13 49/35/28/20/6/5 3 100 >300/194/145/90/22/10 84/53/42/28/10/9 4 90 10 >300/290/208/119/13/9 240/161/106/65/17/11 相容 5 70 30 >300/>300/246/151/26/19 160/100/74/45/8/6 相容 6 50 50 >300/294/225/149/33/25 139/86/65/41/9/6 相容 7 30 70 >300/232/185/125/36/27 85/50/38/24/6/5 相容 8 10 90 233/164/130/90/26/17 57/33/21/15/4/3 相容 9 33 33 34 220/143/109/71/17/13 157/96/78/50/12/9 相容 10 70 20 10 216/127/94/57/8/7 136/89/70/46/7/5 相容 表 6 抗高交变载荷水泥浆现场应用情况
Table 6 Field application of anti-deformation cement slurry under alternative loading
序号 井号 完钻井深/m 水平段长/m 最大垂深/m 固井质量 技术套管压力/MPa 1 焦页A-4HF井 5 825 1 600 3 872 优质 0 2 焦页B-3HF井 5 456 1 312 3 785 优质 0 3 焦页C-6HF井 5 305 2 240 2 808 优质 0 4 焦页D-8HF井 5 458 2 204 2 927 优质 0 5 焦页E-6HF井 5 235 2 387 2 900 合格 0 6 焦页F-S4HF井 4 734 1 928 2 360 优质 0 7 焦页G-5HF井 4 875 1 924 2 592 优质 0 8 焦页H-S1HF井 5 481 2 792 2 444 优质 0 9 焦页G-S5HF井 4 624 1 881 2 522 优质 0 -
[1] 周贤海. 涪陵焦石坝区块页岩气水平井钻井完井技术[J]. 石油钻探技术, 2013, 41(5): 26–30. doi: 10.3969/j.issn.1001-0890.2013.05.005 ZHOU Xianhai. Drilling & completion techniques used in shale gas horizontal wells in Jiaoshiba Block of Fuling Area[J]. Petroleum Drilling Techniques, 2013, 41(5): 26–30. doi: 10.3969/j.issn.1001-0890.2013.05.005
[2] 孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术, 2015, 43(3): 55–60. SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.
[3] ZHAO Chaojie, LI Jun, LIU Gonghui, et al. Analysis of the influence of cement sheath failure on sustained casing pressure in shale gas wells[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 244–254. doi: 10.1016/j.jngse.2019.04.003
[4] 陶谦. 气井水泥环长期密封失效机理及预防措施[J]. 钻采工艺, 2018, 41(3): 25–28. doi: 10.3969/J.ISSN.1006-768X.2018.03.08 TAO Qian. Long-time sealing failure mechanism of cement sheath in gas wells and preventive measures[J]. Drilling & Production Technology, 2018, 41(3): 25–28. doi: 10.3969/J.ISSN.1006-768X.2018.03.08
[5] LIU Kui, GAO Deli, TALEGHANI A D. Integrity failure of cement sheath owing to hydraulic fracturing and casing off-center in horizontal shale gas wells[R]. SPE 191196, 2018.
[6] 刘奎,高德利,曾静,等. 温度与压力作用下页岩气井环空带压力学分析[J]. 石油钻探技术, 2017, 45(3): 8–14. LIU Kui, GAO Deli, ZENG Jing, et al. Annulus pressure analysis of a shale gas well under varied temperatures and pressures[J]. Petroleum Drilling Techniques, 2017, 45(3): 8–14.
[7] XI Yan, LI Jun, LIU Gonghui, et al. A new numerical investigation of cement sheath integrity during multistage hydraulic fracturing shale gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 331–341. doi: 10.1016/j.jngse.2017.11.027
[8] 李早元,郭小阳. 橡胶粉对油井水泥石力学性能的影响[J]. 石油钻探技术, 2008, 36(6): 52–55. doi: 10.3969/j.issn.1001-0890.2008.06.012 LI Zaoyuan, GUO Xiaoyang. Effects of rubber powder on dynamics properties of oil cement stone[J]. Petroleum Drilling Techniques, 2008, 36(6): 52–55. doi: 10.3969/j.issn.1001-0890.2008.06.012
[9] 谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009 TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
[10] ZENG Yijin, LIU Rengguang, LI Xiaojiang, et al. Cement sheath sealing integrity evaluation under cyclic loading using large-scale sealing evaluation equipment for complex subsurface settings[J]. Journal of Petroleum Science and Engineering, 2019, 176: 811–820. doi: 10.1016/j.petrol.2019.02.014
[11] 蒋凯. 粉末丁腈橡胶对固井水泥浆性能的影响[J]. 油田化学, 2019, 36(4): 604–609. JIANG Kai. Effect of powdered acrylonitrile-butadiene rubber (PNBR) on the properties of cement slurry[J]. Oilfield Chemistry, 2019, 36(4): 604–609.
[12] 张智,许红林,,刘志伟,等. 气井环空带压对水泥环力学完整性的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(2): 155–161. doi: 10.11885/j.issn.1674-5086.2014.02.13.01 ZHANG Zhi, XU Honglin, LIU Zhiwei, et al. The effect of sustained casing pressure on the mechanical integrity of cement sheath in gas wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(2): 155–161. doi: 10.11885/j.issn.1674-5086.2014.02.13.01
[13] LIU Kui, GAO Deli, TALEGHANI A D. Analysis on integrity of cement sheath in the vertical section of wells during hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 168: 370–379. doi: 10.1016/j.petrol.2018.05.016
[14] DE ANDRADE J, SANGESLAND S. Cement sheath failure mechanisms: numerical estimates to design for long-term well integrity[J]. Journal of Petroleum Science and Engineering, 2016, 147: 682–698. doi: 10.1016/j.petrol.2016.08.032
-
期刊类型引用(28)
1. 李阳,王延光,刘浩杰,陈雨茂,薛兆杰. 中国石化油藏地球物理二十年发展与思考. 石油物探. 2024(01): 1-11 . 百度学术
2. 彭岩,王一博,雷征东,王笑涵,汪大伟,张广清,周大伟. 致密油藏驱渗结合采油可行性研究. 科学技术与工程. 2024(04): 1448-1458 . 百度学术
3. 陈鑫. 致密油整体缝网压裂技术在杏树岗油田杏69-1井区扶余油层的应用实践. 中外能源. 2024(04): 69-75 . 百度学术
4. 白斌,戴朝成,侯秀林,杨亮,王瑞,王岚,孟思炜,董若婧,刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价. 石油与天然气地质. 2023(04): 846-856 . 百度学术
5. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
6. 邹敏,夏东领,夏冬冬,庞雯. 致密砂岩储层非均质成因研究. 西南石油大学学报(自然科学版). 2022(01): 41-52 . 百度学术
7. 邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 . 本站查看
8. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 . 百度学术
9. 马克新. 复合压裂技术在大庆油田Ⅱ、Ⅲ类致密储层的应用. 大庆石油地质与开发. 2022(04): 161-167 . 百度学术
10. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 . 百度学术
11. 吴飞鹏,范贤章,徐尔斯,杨涛,颜丙富,刘静. 压裂液高压渗滤对砂岩基质损伤演化的细观力学分析. 岩土力学. 2021(12): 3238-3248 . 百度学术
12. 覃建华,张景,蒋庆平,冯月丽,赵逸清,朱键,卢志远,伍顺伟. 玛湖砾岩致密油“甜点”分类评价及其工程应用. 中国石油勘探. 2020(02): 110-119 . 百度学术
13. 闫林,陈福利,王志平,阎逸群,曹瑾健,王坤琪. 我国页岩油有效开发面临的挑战及关键技术研究. 石油钻探技术. 2020(03): 63-69 . 本站查看
14. 许锋,姚约东,吴承美,许章,张金风,赵国翔. 温度对吉木萨尔致密油藏渗吸效率的影响研究. 石油钻探技术. 2020(05): 100-104 . 本站查看
15. 邸元,吴大卫,WU Yushu. 油藏渗流–应力耦合分析的FEM-FVM混合方法的改进. 岩石力学与工程学报. 2020(S1): 2645-2654 . 百度学术
16. 赵驰,吴欣梦. 探究侏罗系油藏开发中采用精细单砂体刻画技术的价值分析. 信息记录材料. 2019(01): 40-41 . 百度学术
17. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 . 百度学术
18. 邹敏,夏东领,庞雯,徐婷. 致密砂岩储层微观孔喉结构表征方法及其应用——以鄂尔多斯盆地红河地区长8层为例. 西安石油大学学报(自然科学版). 2019(02): 46-53 . 百度学术
19. 崔树建. 大庆油田齐家区块致密油水平井提速技术研究. 西部探矿工程. 2019(09): 56-57+61 . 百度学术
20. 夏东领,邹敏,庞雯,吴胜和. 鄂尔多斯盆地镇泾地区长8致密砂岩储层孔喉组合分类及其意义. 地质科技情报. 2018(04): 120-126 . 百度学术
21. 杜洪凌,许江文,李峋,陆军,章敬,彭永灿,陈进,王磊. 新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考. 中国石油勘探. 2018(02): 15-26 . 百度学术
22. 姜瑞忠,张春光,崔永正,张伟,张福蕾,沈泽阳. 考虑压敏的双重介质分形油藏非线性渗流模型. 断块油气田. 2018(05): 612-616 . 百度学术
23. 常雷. 长垣、齐家地区致密油水平井钻井提速配套技术. 石油地质与工程. 2017(06): 98-100+104+128-129 . 百度学术
24. 杨树坤,张博,赵广渊,李翔,郭宏峰. 致密油藏热水驱增油机理定性分析及定量评价. 石油钻采工艺. 2017(04): 399-404 . 百度学术
25. 何祖清,梁承春,彭汉修,朱明,何同. 鄂尔多斯盆地南部致密油藏水平井智能分采技术研究与试验. 石油钻探技术. 2017(03): 88-94 . 本站查看
26. 吕栋梁,徐伟,唐海,唐瑞雪. 特低渗透油藏水平井井网极限注采井距的确定. 断块油气田. 2016(05): 634-637 . 百度学术
27. 刘伟,张晋言,张文姣,刘海河,吕增伟. 基于电成像测井资料的砂砾岩储层有效性分类评价方法. 石油钻探技术. 2016(04): 114-119 . 本站查看
28. 李阳,薛兆杰. 中国石化油气田开发工程技术面临的挑战与发展方向. 石油钻探技术. 2016(01): 1-5 . 本站查看
其他类型引用(20)