形状记忆筛管膨胀性能测试

段友智, 刘欢乐, 艾爽, 秦星, 岳慧, 刘伯昂

段友智, 刘欢乐, 艾爽, 秦星, 岳慧, 刘伯昂. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038
引用本文: 段友智, 刘欢乐, 艾爽, 秦星, 岳慧, 刘伯昂. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038
DUAN Youzhi, LIU Huanle, AI Shuang, QIN Xing, YUE Hui, LIU Boang. Test of the Expansion Performance for Shape Memory Screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038
Citation: DUAN Youzhi, LIU Huanle, AI Shuang, QIN Xing, YUE Hui, LIU Boang. Test of the Expansion Performance for Shape Memory Screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83-88. DOI: 10.11911/syztjs.2020038

形状记忆筛管膨胀性能测试

基金项目: 中国石化科技攻关项目“水平井环空自充填防砂完井技术研究”(编号:P16012)资助
详细信息
    作者简介:

    段友智(1976—),男,山东东营人,2000年毕业于青岛大学化学工程专业,2010年获中国石油大学(华东)油气田开发工程专业博士学位,高级工程师,主要从事完井工艺、油气井防砂及提高采收率方面的研究工作。E-mail:duanyz.sripe@sinopec.com

  • 中图分类号: TE925+.3

Test of the Expansion Performance for Shape Memory Screens

  • 摘要:

    为了解形状记忆筛管在井下环境的膨胀性能,根据该筛管在井下的膨胀原理,研发了能够模拟井下环境的形状记忆筛管膨胀性能测试系统,进行了形状记忆筛管样机膨胀性能测试,分析了循环流体排量和温度对响应温度、膨胀速度和膨胀力的影响。研究结果表明:随着循环流体排量增大,响应温度随之升高,膨胀速度降低;当循环流体温度不低于初始响应温度时,随着循环流体温度升高,膨胀速度增大;循环流体的排量和温度对最终膨胀力的影响较小。测试结果为形状记忆筛管的设计和应用提供了依据。

    Abstract:

    In order to understand the expansion performance of shape memory screens in the downhole environments, a system for testing screen expansion performance was developed by simulating downhole environments based on its expansion principle, by which the expansion performance of the shape memory screen prototype was tested and analyzed the influences of the circulating fluid flowrate and temperature on the response temperature, expansion rate and expansion force. The results showed that the response temperature increased and the expansion speed decreased with the increase of circulating fluid flowrate. When the circulating fluid temperature was not lower than the initial response temperature, the expansion rate increased as the circulating fluid temperature rose, which showed that the influences of circulating fluid flowrate and temperature on the final expansion force were relatively minor. The test results can provide a test basis for designing a shape memory screen and its application in well completion.

  • 图  1   形状记忆筛管膨胀性能模拟测试系统

    Figure  1.   The simulation test system for expansion performance of shape memory screen

    图  2   不同温度下形状记忆筛管样机的外径

    Figure  2.   The outside diameter of shape memory screen at different temperatures

    图  3   不同排量下形状记忆筛管外径随温度的变化

    Figure  3.   Change of outside diameter of shape memory screen with temperature at different flowrates

    图  4   不同时间下形状记忆筛管样机的外径

    Figure  4.   Outside diameter of shape memory screen prototypeat different time

    图  5   不同温度下形状记忆筛管样机的外径

    Figure  5.   Outside diameter of shape memory screen prototypeat different temperature

    图  6   不同排量下形状记忆筛管样机的外径

    Figure  6.   Outside diameter of shape memory screen prototypeat different flowrates

    图  7   不同时间下形状记忆筛管样机的外径(循环流体排量0.6 L/min)

    Figure  7.   Outside diameter of shape memory screen prototype at different time (circulating fluid flowrate of 0.6 L/min)

    图  8   膨胀力随时间的变化

    Figure  8.   Change of expansion force with time

    图  9   不同温度下膨胀力随时间的变化

    Figure  9.   Change of expansion force with time at different temperatures

    图  10   不同排量下膨胀力随时间的变化

    Figure  10.   Change of expansion force with time at different flowrates

  • [1] 王敏生,光新军,孔令军. 形状记忆聚合物在石油工程中的应用前景[J]. 石油钻探技术, 2018, 46(5): 14–20.

    WANG Minsheng, GUANG Xinjun, KONG Lingjun. The prospects of applying shape memory polymer in petroleum engineering[J]. Petroleum Drilling Techniques, 2018, 46(5): 14–20.

    [2] 徐守余,王宁. 油层出砂机理研究综述[J]. 新疆地质, 2007, 25(3): 283–285. doi: 10.3969/j.issn.1000-8845.2007.03.011

    XU Shouyu, WANG Ning. Research on reservoir sand production mechanism[J]. Xinjiang Geology, 2007, 25(3): 283–285. doi: 10.3969/j.issn.1000-8845.2007.03.011

    [3] 王小鲁,杨万萍,严焕德,等. 疏松砂岩出砂机理与出砂临界压差计算方法[J]. 天然气工业, 2009, 29(7): 72–75. doi: 10.3787/j.issn.1000-0976.2009.07.022

    WANG Xiaolu, YANG Wanping, YAN Huande, et al. The sanding mechanism and sanding critical drawdown calculation in loose sandstone[J]. Natural Gas Industry, 2009, 29(7): 72–75. doi: 10.3787/j.issn.1000-0976.2009.07.022

    [4] 周林然,卢渊,伊向艺. 中国油井出砂预测技术现状[J]. 油气地质与采收率, 2006, 13(2): 100–102. doi: 10.3969/j.issn.1009-9603.2006.02.031

    ZHOU Linran, LU Yuan, YI Xiangyi. Present situation on sand prediction technology of oil well in China[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(2): 100–102. doi: 10.3969/j.issn.1009-9603.2006.02.031

    [5] 练章华,刘永刚,张元泽,等. 油气井出砂预测研究[J]. 钻采工艺, 2003, 26(5): 30–31. doi: 10.3969/j.issn.1006-768X.2003.05.011

    LIAN Zhanghua, LIU Yonggang, ZHANG Yuanze, et al. Application of plastic strain on sand production prediction in oil well[J]. Drilling & Production Technology, 2003, 26(5): 30–31. doi: 10.3969/j.issn.1006-768X.2003.05.011

    [6] 王勤田,赵彦超,杨晶,等. 油井出砂临界井底流压计算模型及应用[J]. 江汉石油学院学报, 2002, 24(2): 75–76.

    WANG Qintian, ZHAO Yanchao, YANG Jing, et al. Calculating model of critical bottomhole pressure of sand production and its application[J]. Journal of Jianghan Petroleum Institute, 2002, 24(2): 75–76.

    [7] 范兴沃,李相方,胡喜峰,等. 利用人工神经网络实现对油气井防砂方法优选[J]. 钻采工艺, 2003, 26(6): 53–54. doi: 10.3969/j.issn.1006-768X.2003.06.019

    FAN Xingwo, LI Xiangfang, HU Xifeng, et al. Optimum selection of sand control method in oil & gas well by using artificial neural network[J]. Drilling & Production Technology, 2003, 26(6): 53–54. doi: 10.3969/j.issn.1006-768X.2003.06.019

    [8] 刘大红,宋秀英,刘艳红,等. 割缝筛管防砂设计及应用[J]. 石油机械, 2004, 32(8): 13–16. doi: 10.3969/j.issn.1001-4578.2004.08.005

    LIU Dahong, SONG Xiuying, LIU Yanhong, et al. Slotted screen design and its application to oil/water wells in sand control[J]. China Petroleum Machinery, 2004, 32(8): 13–16. doi: 10.3969/j.issn.1001-4578.2004.08.005

    [9] 李天降,张建军. 激光割缝筛管–压裂砾石填充防砂工艺技术[J]. 海洋石油, 2004, 24(1): 51–53. doi: 10.3969/j.issn.1008-2336.2004.01.010

    LI Tianjiang, ZHANG Jianjun. The technology of laser slotted screen liner fracturing gravel packing sand contro[J]. Offshore Oil, 2004, 24(1): 51–53. doi: 10.3969/j.issn.1008-2336.2004.01.010

    [10] 高成元,张家营,徐强,等. 一次砾石充填防砂工具的研制[J]. 石油机械, 2003, 31(10): 37–38. doi: 10.3969/j.issn.1001-4578.2003.10.013

    GAO Chengyuan, ZHANG Jiaying, XU Qiang, et al. Development of primary sand control tool for gravel packing[J]. China Petroleum Machinery, 2003, 31(10): 37–38. doi: 10.3969/j.issn.1001-4578.2003.10.013

    [11] 董长银,张琪,李志芬,等. 筛管砾石充填井筒附近压降计算方法[J]. 西安石油学院学报(自然科学版), 2002, 17(2): 33–36.

    DONG Changyin, ZHANG Qi, LI Zhifen, et al. A new calculation method of the pressure drop around the wellbore of a gravel-packed perforated well[J]. Journal of Xi'an Petroleum Institute (Natural Science Edition), 2002, 17(2): 33–36.

    [12] 张福强. 形状记忆高分子材料[J]. 高分子通报, 1995, 16(1): 34–42.

    ZHANG Fuqiang. Shape memory polymers material[J]. Polymer Bulletin, 1995, 16(1): 34–42.

    [13] 喻春红,陈强,侯向辉,等. 化学交联型形状记忆聚氨酯材料研究[J]. 机械科学与技术, 2001, 20(1): 69–70. doi: 10.3321/j.issn:1003-8728.2001.01.030

    YU Chunhong, CHEN Qiang, HOU Xianghui, et al. Research on chemical cross-linking shape memory polyurethane material[J]. Mechanical Science and Technology, 2001, 20(1): 69–70. doi: 10.3321/j.issn:1003-8728.2001.01.030

    [14]

    METCALFE P. Expandable sand screen technology increases production[J]. World Oil, 2000, 221(2): 94–95.

    [15]

    MCMILLIN K. Using expandable sand screens in unconsolidated formations[J]. Offshore, 2000, 60(1): 52, 129.

    [16]

    OSUNJAYE G, ABDELFATTAH T. Open hole sand control optimization using shape memory polymer conformable screen with inflow control application[R]. SPE 183947, 2017.

    [17] 孙德旭,陈雪,梁伟,等. 聚氨酯类自膨胀防砂材料制备及性能评价[J]. 油田化学, 2016, 34(2): 217–221.

    SUN Dexu, CHEN Xue, LIANG Wei, et al. Preparation and performance evaluation of polyurethane-expandable material in sand control[J]. Oilfield Chemistry, 2016, 34(2): 217–221.

    [18] 童世虎,董雷,徐志洪. 形状记忆聚合物的力学性能研究[J]. 工程与试验, 2009, 49(3): 29–32. doi: 10.3969/j.issn.1674-3407.2009.03.008

    TONG Shihu, DONG Lei, XU Zhihong. The research on mechanical properties of shape memory polymer[J]. Engineering & Test, 2009, 49(3): 29–32. doi: 10.3969/j.issn.1674-3407.2009.03.008

    [19] 山口章三郎. 形态记忆[J]. 化学工业, 1983, 34(10): 57–60.

    YAMAGUCHI Saburo. Shape memory[J]. Chemistry Industry, 1983, 34(10): 57–60.

    [20]

    WANG Xiuli, OSUNJAYE G. Advancement in openhole sand control applications using shape memory polymer[R]. SPE 181361, 2016.

    [21]

    FURGIER J, VIGUERIE B, AUBRY E, et al. Stand alone screens: what key parameters are really important for a successful design[R]. SPE 165170, 2013.

    [22]

    YUAN Yusheng, GOODSON J E, JOHNSON M H, et al. In-situ mechanical and functional behavior characterization of shape memory polymer for sand control applications[R]. SPE 143204, 2012.

    [23]

    CARREJO N, HORNER, D N, JOHNSON M H. Shape memory polymer as a sand management alternative to gravel packing[R]. SPE 147101, 2011.

  • 期刊类型引用(7)

    1. 梁红军,刘洪涛,颜辉,陈凯枫,阳君奇,周智. 防斜打快技术在库车前陆区的实践应用. 新疆石油天然气. 2023(02): 49-55 . 百度学术
    2. 马俊强,李飞,张光伟. 浅析煤层气参数井取芯段井斜超标原因及预防措施——基于平参2井. 中国煤层气. 2022(03): 21-25 . 百度学术
    3. 李成嵩,王银生. 东营地区地热回灌井钻井完井技术研究与试验. 石油钻探技术. 2021(06): 50-54 . 本站查看
    4. 张凯. 复合钻进技术在红柳煤矿冻结孔施工中的应用. 探矿工程(岩土钻掘工程). 2020(02): 54-58 . 百度学术
    5. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    6. 刘勇. 石油定向井常用钻具组合的分析与探讨. 中国石油石化. 2017(02): 3-4 . 百度学术
    7. 李玮,李卓伦,刘伟卿,邱晓宁,陈世春. 扭转冲击提速工具在文安区块的现场应用. 特种油气藏. 2016(04): 144-146+158 . 百度学术

    其他类型引用(4)

图(10)
计量
  • 文章访问数:  1257
  • HTML全文浏览量:  665
  • PDF下载量:  83
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-09-14
  • 修回日期:  2020-04-24
  • 网络出版日期:  2020-05-07
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回