顺北油气田主干断裂带深穿透酸化技术

李新勇, 李春月, 赵兵, 房好青, 黄燕飞, 胡文庭

李新勇, 李春月, 赵兵, 房好青, 黄燕飞, 胡文庭. 顺北油气田主干断裂带深穿透酸化技术[J]. 石油钻探技术, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
引用本文: 李新勇, 李春月, 赵兵, 房好青, 黄燕飞, 胡文庭. 顺北油气田主干断裂带深穿透酸化技术[J]. 石油钻探技术, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
LI Xinyong, LI Chunyue, ZHAO Bing, FANG Haoqing, HUANG Yanfei, HU Wenting. Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
Citation: LI Xinyong, LI Chunyue, ZHAO Bing, FANG Haoqing, HUANG Yanfei, HU Wenting. Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014

顺北油气田主干断裂带深穿透酸化技术

基金项目: 国家科技重大专项课题“西北超深井高效钻完井工艺技术”(编号:2017ZX05005-005-009)和中国石化科技攻关项目“顺北1区断溶体油藏储层改造技术研究与应用”(编号:P18022-2)联合资助
详细信息
    作者简介:

    李新勇(1972一),男,新疆乌鲁木齐人,1997年毕业于西南石油学院采油工程专业,高级工程师,主要主要从事储层改造方面的研究工作。E-mail:lixinyong.xbsj@sinopec.com

  • 中图分类号: TE357.2

Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field

  • 摘要:

    顺北油气田主干断裂带碳酸盐岩储层裂缝发育,钻井过程中井壁易垮塌掉块,超深水平井中岩屑难以返出,且部分井钻井液漏失量大,造成储层堵塞严重,常规酸化技术无法解除污染,稳产难度大。为此,通过优选解堵酸及优化施工参数等攻关研究,形成了“近井解堵+远井疏通”的主干断裂带深穿透酸化技术,其基本原理为:近井地带采用低黏度、反应速度快的酸液,快速扩散形成各向蚓孔,穿透污染带;远井地带大排量、较大规模地注入高黏酸液,对远井通道进行疏通,建立高导流渗流通道。该酸化技术在顺北油气田应用6井次,酸化效果显著,同时解决了近井和远井供液通道堵塞的问题,累计增产油量16.06×104 t。现场应用结果表明,该酸化技术可以解决顺北油气田主干断裂带碳酸盐岩储层的堵塞问题,对国内外类似储层酸化解堵具有借鉴价值。

    Abstract:

    Due to fractures developed in the carbonate reservoirs of main fault zones in the Shunbei Oil and Gas Field, the well wall is prone to sloughing and falling frequently during drilling, and the cuttings in ultra-deep horizontal well have very difficult flow back, along with serious leakage in some wells. The cuttings accumulation and serious leakage cause the payzone to be blocked heavily, and this blockage cannot be removed by conventional acidizing technologies. In fact, they experience great difficulty in keeping stable production. In order to solve the problem, the team developed a working hypothesis and then tested it. The low-viscosity and quick reaction acid was used in near the wellbore to create wormholes by rapid diffusion penetrating damage zone, while large amount of high-viscosity acid was injected to far wellbore zone to create high-conductivity channels. On this basis, a deep penetration acidizing technology in the main fault zone was developed, featuring “plug removal near wellbore and channeling far from wellbore”. This technology has been applied to 6 wells, resulting in cumulative oil increment of 16.06×104 t, which shows great acidizing effects and resolves the problems of payzone blocking near and far from the wellbore. Field application results showed that the technology could effectively solve the blocking problems of main fault zone in Shunbei oil and gas field, and provide a reference for acidizing and plug removal of similar carbonate reservoirs at home and abroad.

  • 图  1   表皮系数与钻井液漏失量的关系

    Figure  1.   The relationship between skin coefficient and leakage

    图  2   酸化技术思路示意

    Figure  2.   Schematic diagram of acidizing technology

    图  3   不同酸液的滤失量

    Figure  3.   Comparison of filtration rate for different acid solutions

    图  4   不同浓度酸液的反应速率

    Figure  4.   Comparison of reaction rates in different acid solutions

    图  5   温度170 ℃下酸液排量与酸蚀有效距离的关系

    Figure  5.   Relationship of the effective acid erosion distance with acid displacement at 170 ℃

    图  6   排量与穿透深度的关系

    Figure  6.   Relationship between displacement and penetration depth

    图  7   不同排量下注入相同体积酸液后的地层孔隙度场

    Figure  7.   ormation porosity field after injecting same volume acid at different displacements

    图  8   不同注酸时间下的地层孔隙度场

    Figure  8.   Formation porosity field at different injection times

    表  1   不同密度钻井液伤害试验结果

    Table  1   Test result of formation damage at different mud densities

    钻井液密度/
    (kg·L–1
    渗透率/mD伤害程度
    污染前 污染后
    1.71619.0011.020.42
    1.71633.0012.210.63
    1.71627.0011.340.58
    1.41214.00 8.680.38
    1.41217.00 7.650.55
    1.41223.0011.960.48
     注:伤害程度=1-污染后渗透率/污染前渗透率。
    下载: 导出CSV
  • [1] 闫娥,张艳红,黄英. 顺北地区奥陶系碳酸盐岩储层发育特征[J]. 内江科技, 2013, 34(5): 89–90. doi: 10.3969/j.issn.1006-1436.2013.05.063

    YAN E, ZHANG Yanhong, HUANG Ying. Characteristics of Ordovician carbonate reservoirs in Shunbei Area[J]. Neijiang Science & Technology, 2013, 34(5): 89–90. doi: 10.3969/j.issn.1006-1436.2013.05.063

    [2] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201

    [3] 邓尚,李慧莉,张仲培,等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878–887. doi: 10.11743/ogg20180503

    DENG Shang,LI Huili,ZHANG Zhongpei,et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei Area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878–887. doi: 10.11743/ogg20180503

    [4] 张平,贾晓斌,白彬珍,等. 塔河油田钻井完井技术进步与展望[J]. 石油钻探技术, 2019, 47(2): 1–8.

    ZHANG Ping, JIA Xiaobin, BAI Binzhen, et al. Progress and outlook on drilling and completion technologies in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 1–8.

    [5] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe Area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301

    [6] 周文,李秀华,金文辉,等. 塔河奥陶系油藏断裂对古岩溶的控制作用[J]. 岩石学报, 2011, 27(8): 2339–2348.

    ZHOU Wen, LI Xiuhua, JIN Wenhui, et al. The control action of fault to paleokarst in view of Ordovician reservoir in Tahe Area[J]. Acta Petrologica Sinica, 2011, 27(8): 2339–2348.

    [7] 范胜,宋碧涛,陈曾伟,等. 顺北5-8井志留系破裂性地层提高承压能力技术[J]. 钻井液与完井液, 2019, 36(4): 431–436. doi: 10.3969/j.issn.1001-5620.2019.04.006

    FAN Sheng, SONG Bitao, CHEN Zengwei, et al. Technology for enhancing pressure bearing capacity of fractured Silurian system in Well Shunbei 5-8[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 431–436. doi: 10.3969/j.issn.1001-5620.2019.04.006

    [8] 翟晓先. 塔里木盆地塔河特大型油气田勘探实践与认识[J]. 石油实验地质, 2011, 33(4): 323–331. doi: 10.3969/j.issn.1001-6112.2011.04.001

    ZHAI Xiaoxian. Exploration practice and experience of Tahe giant oil-and-gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2011, 33(4): 323–331. doi: 10.3969/j.issn.1001-6112.2011.04.001

    [9] 周林波,刘红磊,解皓楠,等. 超深碳酸盐岩水平井水力喷射定点深度酸化压裂技术[J]. 特种油气藏, 2019, 26(3): 158–162.

    ZHOU Linbo, LIU Honglei, XIE Haonan, et al. Fixed-point acid fracturing technology in the ultra-deep carbonate Horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 158–162.

    [10] 曲占庆,林强,郭天魁,等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4): 533–536.

    QU Zhanqing, LIN Qiang, GUO Tiankui, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 533–536.

    [11] 何春明,陈红军,王文耀. 碳酸盐岩储层转向酸化技术现状与最新进展[J]. 石油钻探技术, 2009, 37(5): 121–126.

    HHE Chunming, CHEN Hongjun, WANG Wenyao. Diversion acidizing used for carbonate reservoir: state-of-the-art and new development[J]. Petroleum Drilling Techniques, 2009, 37(5): 121–126.

    [12] 朝鲁门,史继伟,王天柱,等. 顺北5井产量递减原因分析及酸化压裂效果评价[J]. 化工管理, 2018(18): 143–144. doi: 10.3969/j.issn.1008-4800.2018.18.115

    CHAO Lumen, SHI Jiwei, WANG Tianzhu, et al. Rate decline analysis and evaluation to effect of fracturing acidizing for Shunbei 5 well[J]. Chemical Enterprise Management, 2018(18): 143–144. doi: 10.3969/j.issn.1008-4800.2018.18.115

    [13] 杨乾隆,李立标,陶思羽,等. 注水井不动管柱螯合酸脉冲式注入酸化增注技术[J]. 石油钻探技术, 2018, 46(5): 90–94.

    YANG Qianlong, LI Libiao, TAO Siyu, et al. Chelate acid pulse injection and acidizing stimulation technology for immobilized injecting well string[J]. Petroleum Drilling Techniques, 2018, 46(5): 90–94.

    [14] 张猛,赵磊. 顺北油田固井工艺技术浅析[J]. 中国石油和化工标准与质量, 2016, 36(18): 109–110. doi: 10.3969/j.issn.1673-4076.2016.18.055

    ZHANG Meng, ZHAO Lei. Discussion on the cementing technology in Shunbei Oil and Gas Field[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(18): 109–110. doi: 10.3969/j.issn.1673-4076.2016.18.055

    [15] 邹书强,王建云,张红卫,等. 顺北鹰1井ϕ444.5 mm长裸眼固井技术[J]. 石油钻探技术, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008

    ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, et al. ϕ444.5 mm long openhole cementing technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008

    [16] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺, 2019, 41(2): 130–136. doi: 10.13639/j.odpt.2019.02.002

    LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136. doi: 10.13639/j.odpt.2019.02.002

    [17]

    GLASBERGEN G, BUIJSE M. Improved acid diversion design using a placement simulator[R]. SPE 102412, 2006.

  • 期刊类型引用(6)

    1. 李林,张龙,李勇,冯胤翔,李皋,肖东. 基于静电流量计的气体钻井返出岩屑流量监测. 科学技术与工程. 2023(15): 6402-6408 . 百度学术
    2. 范玉光,田中兰,明瑞卿,杨恒林,付利,王元,郭凯杰. 国内外水平井井眼清洁监测技术现状及发展建议. 石油机械. 2020(03): 1-9 . 百度学术
    3. 王巧宁. 基于LabVIEW平台的建筑室内能量传递监测系统设计. 电子设计工程. 2020(10): 60-64 . 百度学术
    4. 李伟,李硕. 理解数字声音——基于一般音频/环境声的计算机听觉综述. 复旦学报(自然科学版). 2019(03): 269-313 . 百度学术
    5. 姜峰. 英语语音合理性自动化识别模型研究. 自动化与仪器仪表. 2019(09): 202-205 . 百度学术
    6. 王沛,欧阳传湘,陈宏生,陈向军. 应用PCA和多元非线性回归快速预测储层敏感性. 断块油气田. 2018(02): 232-235 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  535
  • PDF下载量:  50
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-04-22
  • 修回日期:  2019-12-17
  • 网络出版日期:  2020-03-10
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回