Optimization Design Method for Casing String Combination Based on Heuristic Algorithm
-
摘要:
针对深井、超深油气井中套管柱组合设计存在非线性、多目标和离散变量组合的问题,提出了一种基于启发式算法的套管柱组合优化设计方法。采用树状结构表示套管柱组合并将其参数化,给出了体现套管柱成本、质量和安全因素的设计需求向量,建立了以该向量为基础的可调多目标数学模型,并给出了利用启发式算法求解该模型的方法。通过与经典的套管柱设计案例进行比较分析,在最经济方案的情形下,利用所建立数学模型得出的解在适应值方面比原方法更好,如解3在成本和质量方面均有所降低,解2的成本降低4.057%,但质量增加0.274%。研究结果表明,基于启发式算法的套管柱组合优化设计方法得出的解具有合理性,且在一定程度上比原有解更优,可解决深井、超深井套管柱组合设计存在的问题。
Abstract:Casing string combination design in deep wells and ultra-deep oil and gas wells, has inherent problems, which are nonlinear, multi-objective and combinatorial with discrete variables. This paper presents a method for design optimization of casing string based on a heuristic algorithm. The casing string combination was represented by a tree structure and parameterized, the design requirement vector reflecting the cost, weight and safety factors of casing string was given, and the adjustable multi-objective mathematical model based on this vector was established. A heuristic algorithm was proposed to solve the model. The analysis involved the comparison and analysis with the typical cases of casing string design. Considering that, the mathematical model established in this paper was used to obtain a solution that had better value than the original method in terms of fitness in the case of the most economic program. For example, solution 3 led to a reduction of cost and weight, and solution 2 led to a reduction in cost by 4.057%, but in increase in weight by 0.274%. The results show that the solution obtained by this method is reasonable and better than the original solution to some extent. This approach can effectively solve the complex casing string combination design problem in deep and ultra-deep wells.
-
-
表 1 最经济方案结果对比
Table 1 Results comparison for the most economic program
解 x1 x2 x3 n1 n2 n3 质量/kg 成本/美元 评价值 解1 15 21 15 107 63 80 150 119.8 283 992.4 –7.509 3 解2 15 21 10 125 71 54 150 531.1 272 470.0 –7.645 8 解3 15 21 15 108 60 82 149 965.6 283 722.7 –7.521 2 表 2 套管设计最经济方案对比
Table 2 Comparison for the most economic program of casing design
解 井段/m 序号 价格/
(美元·m–1)线密度/
(kg·m–1)抗内压强度/
MPa抗挤强度/
MPa抗拉强度/
kN内径/
mm外径/
mm钢级 扣型 解1 0~1 305.4 15 91.315 59.527 47.022 29.165 3 818.10 224.409 244.5 S95 2 1305.4~2074.0 21 98.684 64.735 51.780 38.611 4 267.55 222.377 244.5 S95 2 2074.0~3050.0 15 91.315 59.527 47.022 29.165 3 818.10 224.409 244.5 S95 2 解2 0~1525.0 15 91.315 59.527 47.022 29.165 3 818.10 224.409 244.5 S95 2 1 525.0~2 391.2 21 98.684 64.735 51.780 38.611 4 267.55 222.377 244.5 S95 2 2 391.2~3 050.0 10 72.677 59.527 27.234 29.165 2 687.80 224.409 244.5 S80 1 解3 0~1 317.6 15 91.315 59.527 47.022 29.165 3 818.10 224.409 244.5 S95 2 1 317.6~2 049.6 21 98.684 64.735 51.780 38.611 4 267.55 222.377 244.5 S95 2 2 049.6~3 050.0 15 91.315 59.527 47.022 29.165 3 818.10 224.409 244.5 S95 2 表 3 最经济方案中每组的最小安全系数
Table 3 Comparison of minimum design safety factors per segment in the most economic program
解 组 最小安全系数 抗拉 抗内压 抗外挤 解1 G1 2.60 1.18 1.47 G2 5.00 1.46 1.46 G3 8.30 1.60 1.13 解2 G1 2.59 1.18 1.27 G2 5.66 1.53 1.46 G3 8.65 1.01 1.20 解3 G1 2.60 1.18 1.45 G2 5.04 1.46 1.46 G3 8.10 1.59 1.13 -
[1] 李浩,毕利,靳彬锋. 改进的粒子群算法在多目标车间调度的应用[J]. 计算机应用与软件, 2018, 35(3): 49–53. doi: 10.3969/j.issn.1000-386x.2018.03.009 LI Hao, BI Li, JIN Binfeng. Application of improved particle swarm optimization in multi-target working workshop scheduling[J]. Computer Applications and Software, 2018, 35(3): 49–53. doi: 10.3969/j.issn.1000-386x.2018.03.009
[2] 高德利,覃成锦. 含盐膏层井复合套管柱优化设计技术[J]. 石油钻探技术, 2003, 31(5): 4–6. doi: 10.3969/j.issn.1001-0890.2003.05.002 GAO Deli, TAN Chengjin. Optimized design technology for complex casing string in the wells with salt formation[J]. Petroleum Drilling Techniques, 2003, 31(5): 4–6. doi: 10.3969/j.issn.1001-0890.2003.05.002
[3] 管志川,周广陈,胡湘炯. 固井规划系统目的分析及套管柱优化设计模型[J]. 石油大学学报(自然科学版), 1994, 18(3): 35–40. GUAN Zhichuan, ZHOU Guangchen, HU Xiangjiong. Objiective analysis of cement programming system and a model to optimize casing string design[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1994, 18(3): 35–40.
[4] 吕苗荣. 有段长约束的套管柱强度优化设计[J]. 江汉石油学院学报, 1996, 18(1): 53–57. LYU Miaorong. Optimization design of casing string with length constrained by means of graph-search strategy[J]. Journal of Jianghan Petroleum Institute, 1996, 18(1): 53–57.
[5] 覃成锦.油气井套管柱载荷分析及优化设计研究[D].北京: 清华大学, 2000. TAN Chengjin. A research on load analysis & optimized design of casing strings in oil & gas wells[D]. Beijing: Tsinghua University, 2000.
[6] 王旱祥,李增亮,隋允康. 定向井和水平井套管柱的优化设计[J]. 石油机械, 2003, 31(11): 18–20. doi: 10.3969/j.issn.1001-4578.2003.11.006 WANG Hanxiang, LI Zengliang, SUI Yunkang. Optimum design of casing string in directional and horizontal holes[J]. China Petroleum Machinery, 2003, 31(11): 18–20. doi: 10.3969/j.issn.1001-4578.2003.11.006
[7] WOJTANOWIEZ A K, Maidla E E. Minimum-cost casing design for vertical and directional wells[R]. SPE 14499, 1987.
[8] 孙全俊.深井套管柱优化设计[D].大庆: 大庆石油学院, 1996. SUN Quanjun. Optimization design of casing string in deep wells[D]. Daqing: Daqing Petroleum Institute, 1996.
[9] 鞠玉修,赵怀文. 分支定界法优化设计石油套管柱[J]. 石油大学学报(自然科学版), 1996, 20(1): 53–56. JU Yuxiu, ZHAO Huaiwen. Optimization design of casing string with branch-bound method[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1996, 20(1): 53–56.
[10] HALAL A S, WARLING D J, WAGNER R R. Minimum cost casing design[R]. SPE 36448, 1996.
[11] SAMUEL G R, GONZALES A. Optimization of multistring casing design with wellhead growth[J]. SPE 56762, 1999.
[12] 金业权. 成本约束条件下的套管柱优化设计[J]. 天然气工业, 2006, 26(5): 147–148. doi: 10.3321/j.issn:1000-0976.2006.05.048 JIN Yequan. Optimizing casing string design under cost con-straint[J]. Natural Gas Industry, 2006, 26(5): 147–148. doi: 10.3321/j.issn:1000-0976.2006.05.048
[13] 王跃方,汤怀龙,余雷,等. 油井套管结构的最小成本设计[J]. 计算力学学报, 2001, 18(1): 64–68. doi: 10.3969/j.issn.1007-4708.2001.01.012 WANG Yuefang, TANG Huailong, YU Lei, et al. Minimum cost design of casing structures of oil wells[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 64–68. doi: 10.3969/j.issn.1007-4708.2001.01.012
[14] 沈晓维.遗传算法在石油工程套管柱优化设计中的应用研究[D].长春: 吉林大学, 2005. SHEN Xiaowei. Application of GA in casing string optimum design of petroleum engineering[D]. Changchun: Jilin University, 2005.
[15] 何英明,王瑞和,雷杨,等. 基于遗传算法的套管柱优化设计方法[J]. 石油机械, 2012, 40(6): 26–29. HE Yingming, WANG Ruihe, LEI Yang, et al. Genetic algorithm-based optimized design method for casing string[J]. China Petroleum Machinery, 2012, 40(6): 26–29.
[16] 黄志强,田海. 一种基于成本的套管柱优化设计方法[J]. 大庆石油学院学报, 2009, 33(4): 67–71. HUANG Zhiqiang, TIAN Hai. A new method for optimizing casing string design to reduce cost[J]. Journal of Daqing Petroleum Institute, 2009, 33(4): 67–71.
[17] 汪智能.复杂深井超深井套管柱优化设计及下套管技术研究[D].北京: 中国石油大学(北京), 2011. WANG Zhineng. Research on optimization design of casing string and casing technology in troublesome deep and ultra-deep well[D]. Beijing: China University of Petroleum(Beijing), 2011.
[18] 杨成新,潘志勇,王孝亮,等. 某复杂超深井生产套管柱优化设计[J]. 石油管材与仪器, 2017, 3(3): 28–30. YANG Chengxin, PAN Zhiyong, WANG Xiaoliang, et al. Optimization design of producing casing string in a complex ultra-deep well[J]. Petroleum Tubular Goods & Instruments, 2017, 3(3): 28–30.
[19] 何英明,雷杨,何英君,等. 套管柱优化设计面临的问题及发展趋势[J]. 国外油田工程, 2010, 26(11): 36–39. HE Yingming, LEI Yang, HE Yingjun, et al. Problems and solutions of optimizing casing string design[J]. Foreign Oil Field Engineering, 2010, 26(11): 36–39.
[20] 曾勇,郑双进,吴俊成,等. 井身结构优化设计研究[J]. 长江大学学报(自科版), 2011, 8(9): 60–62. ZENG Yong, ZHENG Shuangjin, WU Juncheng, et al. Research on optimization design of wellbore configuration[J]. Journal of Yangtze University(Natural Science Edition), 2011, 8(9): 60–62.
[21] 樊恒,闫相祯,冯耀荣,等. 基于分项系数法的套管实用可靠度设计方法[J]. 石油学报, 2016, 37(6): 807–814. FAN Heng, YAN Xiangzhen, FENG Yaorong, et al. Practical reliability design method of casing based on partial coefficient method[J]. Acta Petrolei Sinica, 2016, 37(6): 807–814.
[22] JELLISON M J, BROCK J N. The impact of compression forces on casing-string designs and connectors[J]. SPE Drilling & Completion, 2000, 15(4): 241–248.
[23] 刘小刚,陶林,王玉山,等. 渤海油田高温高压井套管优化设计[J]. 断块油气田, 2011, 18(6): 787–789. LIU Xiaogang, TAO Lin, WANG Yushan, et al. Optimal design of casing of high temperature and high pressure well in Bohai Oilfield[J]. Fault-Block Oil & Gas Field, 2011, 18(6): 787–789.
[24] 郑政,袁骐骥. 深井温度对套管强度的影响探讨[J]. 西部探矿工程, 2013, 25(1): 55–56. doi: 10.3969/j.issn.1004-5716.2013.01.019 ZHENG Zheng, YUAN Qiji. Discussion on the influence of deep well temperature on casing strength[J]. West-China Exploration Engineering, 2013, 25(1): 55–56. doi: 10.3969/j.issn.1004-5716.2013.01.019
[25] 宋军官.套管柱设计新方法及其软件编制[D].大庆: 大庆石油学院, 2003. SONG Junguan. New method for casing string design and its software establishment[D]. Daqing: Daqing Petroleum Institute, 2003.
[26] 唐竹.深水井套管柱强度设计[D].成都: 西南石油大学, 2016. TANG Zhu. Strength design of casing string in deep water wells[D]. Chengdu: Southwest Petroleum University, 2016.
[27] SOONG A, ARRIFFIN M F, ROSLAND H A. Integration of casing wear in casing design and stress analysis workflow[R]. SPE 187011, 2017.
[28] 幸雪松,王晓鹏. 利用套管强度余量进行套管设计初探[J]. 非常规油气, 2016, 3(2): 70–74. doi: 10.3969/j.issn.2095-8471.2016.02.012 XING Xuesong, WANG Xiaopeng. Casing design based on casing strength margin[J]. Unconventional Oil & Gas, 2016, 3(2): 70–74. doi: 10.3969/j.issn.2095-8471.2016.02.012
[29] 何世明,刘崇建,张玉隆,等. 套管柱强度设计计算[J]. 西南石油学院学报, 1997, 19(1): 53–59. HE Shiming, LIU Chongjian, ZHANG Yulong, et al. Calculation of strength design of casing strings[J]. Journal of Southwest Petroleum Institute, 1997, 19(1): 53–59.
[30] 周新义.深井套管柱强度设计研究[D].西安: 西安石油大学, 2012. ZHOU Xinyi. The research of casing string strength design in deep well[D]. Xi’an: Xi’an Shiyou University, 2012.
[31] 赵春晖.套管柱优化设计研究[D].北京: 中国石油大学(北京), 2016. ZHAO Chunhui. The research on optimization design of casing string[D]. Beijing: China University of Petroleum(Beijing), 2016.
[32] 周新义,董小卫,张高翔,等. 套管柱设计及其软件研究[J]. 辽宁化工, 2012, 41(1): 37–40. doi: 10.3969/j.issn.1004-0935.2012.01.012 ZHOU Xinyi, DONG Xiaowei, ZHANG Gaoxiang, et al. Study on design of casing string and applied software[J]. Liaoning Chemical Industry, 2012, 41(1): 37–40. doi: 10.3969/j.issn.1004-0935.2012.01.012
[33] 廖华林,管志川,闫振来,等. 基于可靠性理论的套管失效风险评价方法[J]. 石油学报, 2010, 31(1): 161–164. doi: 10.7623/syxb201001031 LIAO Hualin, GUAN Zhichuan, YAN Zhenlai, et al. Assessment method of casing failure risk based on structure reliability theory[J]. Acta Petrolei Sinica, 2010, 31(1): 161–164. doi: 10.7623/syxb201001031
[34] 龙刚,李猛,管志川,等. 深井套管安全可靠性评价方法[J]. 石油钻探技术, 2013, 41(4): 48–53. doi: 10.3969/j.issn.1001-0890.2013.04.011 LONG Gang, LI Meng, GUAN Zhichuan, et al. Evaluation method of casing safety and reliability in deep wells[J]. Petroleum Drilling Techniques, 2013, 41(4): 48–53. doi: 10.3969/j.issn.1001-0890.2013.04.011
[35] SHENG Yanan, GUAN Zhichuan, WEI Kai, et al. Optimization method for casing design based on coordination mechanism of drilling risk and cost[R]. SPE 186963, 2017.
[36] GOUVEIA L P, JUNIOR E T L, SANTOS J P L, et al. Reliability-based study of well casing strength formulation: 5th International Conference on Computational Methods, Cambridge, 28-30 July, 2014[C].
[37] 张智.深井高温高压条件下套管柱强度设计方法及计算机软件研究[D].南充: 西南石油学院, 2002. ZHANG Zhi. Research on design method and computer software of casing string strength in deep well under high temperature and high pressure[D]. Nanchong: Southwest Petroleum Institute, 2002.
[38] RAHMAN S S, CHILINGARIAN G V. Casing design theory and practice[M]. Amsterdam: Elsevier Science, 1995.
-
期刊类型引用(10)
1. 杨进,李磊,宋宇,仝刚,张明贺,张慧. 中国海洋油气钻井技术发展现状及展望. 石油学报. 2023(12): 2308-2318 . 百度学术
2. 王国娜,张海军,孙景涛,张巍,曲大孜,郝晨. 大港油田大型井丛场高效钻井技术优化与应用. 石油钻探技术. 2022(02): 51-57 . 本站查看
3. 刘亮,涂福洪,郑海刚,郭亮,邢帅,王莹. 大港油田人工岛单筒双井钻完井关键技术. 西部探矿工程. 2022(07): 70-73 . 百度学术
4. 刁斌斌,高德利,胡德高,刘尧文. 基于贡献率分析的井眼轨迹测量主要误差源辨识. 钻采工艺. 2021(01): 1-6 . 百度学术
5. 谢鑫,丁少华,王进涛,窦正道,徐浩. 丛式井施工顺序优化探讨. 复杂油气藏. 2021(01): 80-84 . 百度学术
6. 李琪,刘毅,王六鹏,高云文,张燕娜,张明. 密集井网直井段井眼轨道交碰风险计算新方法. 石油钻采工艺. 2021(01): 29-33 . 百度学术
7. 张海军,张楠,刘军彪,钱锋,孔祥吉. 尼日尔沙漠油田小规模“工厂化”钻井工艺优化. 西南石油大学学报(自然科学版). 2020(05): 145-152 . 百度学术
8. 赵平起,李东平,唐世忠,滕国权. 大港油田井丛场建设管理创新与实践. 国际石油经济. 2020(12): 95-100 . 百度学术
9. 王建龙,许京国,杜强,金海峰,程东,郑锋,李瑞明. 大港油田埕海2-2人工岛钻井提速提效关键技术. 石油机械. 2019(07): 30-35 . 百度学术
10. 林家昱,王晓鹏,张羽臣,张磊,李进. 渤海油田丛式井综合调整加密防碰技术. 石油工业技术监督. 2019(11): 1-4+8 . 百度学术
其他类型引用(2)