顺北鹰1井ϕ444.5 mm长裸眼固井技术

邹书强, 王建云, 张红卫, 伊尔齐木

邹书强, 王建云, 张红卫, 伊尔齐木. 顺北鹰1井ϕ444.5 mm长裸眼固井技术[J]. 石油钻探技术, 2020, 48(1): 40-45. DOI: 10.11911/syztjs.2020008
引用本文: 邹书强, 王建云, 张红卫, 伊尔齐木. 顺北鹰1井ϕ444.5 mm长裸眼固井技术[J]. 石油钻探技术, 2020, 48(1): 40-45. DOI: 10.11911/syztjs.2020008
ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, Eerqm. ϕ444.5 mm Long Openhole Cementing Technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40-45. DOI: 10.11911/syztjs.2020008
Citation: ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, Eerqm. ϕ444.5 mm Long Openhole Cementing Technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40-45. DOI: 10.11911/syztjs.2020008

顺北鹰1井ϕ444.5 mm长裸眼固井技术

基金项目: 国家重点基础研究发展计划(“973”计划)项目“深井复杂地层安全高效钻井基础研究”(编号:2010CB226700)和国家自然科学基金项目“控压钻井测控理论及关键问题研究”(编号:51334003)联合资助
详细信息
    作者简介:

    邹书强(1988—),男,贵州印江人,2009年毕业于中国地质大学(武汉)石油工程专业,工程师,主要从事固井技术管理工作。E-mail:zhoushuq.xbsj@sinopec.com

  • 中图分类号: TE256+.2

ϕ444.5 mm Long Openhole Cementing Technology for Well SBY-1

  • 摘要:

    顺北鹰1井二开采用ϕ444.5 mm钻头钻至井深5 395.00 m中完,需下入ϕ339.7 mm技术套管固井。固井施工存在套管悬重大、裸眼段长、二叠系火成岩易漏失层发育和超深大尺寸分级注水泥器下入难度大等技术难题,造成下套管过程中易发生阻卡和注水泥时易发生返性漏失等井下故障。因此,针对顺北鹰1井的特殊工况,通过校核载荷配套下套管工具、优化通井措施、设计套管下放速度和调整钻井液性能,确保套管顺利下入;通过设计适用于超深井的大尺寸分级注水泥器和固井施工流体排量、采用非连续式分级注水泥工艺和复合低密度防漏水泥浆,防止注水泥过程发生漏失,保证固井质量。顺北鹰1井二开固井采取上述技术措施,ϕ339.7 mm套管顺利下至设计井深,注水泥过程中只出现轻微漏失,易漏失层位固井质量中等,实现了有效封固。顺北鹰1井ϕ444.5 mm长裸眼段顺利封固,为顺北油气田大尺寸长裸眼固井积累了成功经验,其固井技术措施可为国内深井超深井大尺寸长裸眼固井提供借鉴。

    Abstract:

    In the second spud of Well SBY-1, the ϕ444.5 mm drill bit is used to drill to the depth of 5 395.00 m, and put in the ϕ339.7 mm technical casing. There are a series of technical problems in casing running and cementing operation, such as heavy casing suspension, long open hole section, development of leaky layer of Permian igneous rock, lack of experience in running super deep and large-scale graded cement injector, etc., which are very easy to cause complex working conditions such as sticking in casing running and loss of return in cementing. Therefore, it is urgent to optimize the matching technology to ensure the cementing quality. According to the special working conditions of Well SBY-1, through load checking calculation, well passing measures strengthening, casing running speed and drilling fluid performance optimization, a large-scale casing running technology of ultra deep well is formed; through discontinuous staged cement injection technology and low-density leak proof cement slurry system optimization, the cementing technology of ultra deep and large-scale casing is improved. Based on the above measures, the second spud in casing of Well SBY-1 is running smoothly, and the cementing quality of the leaky zone is medium, which realizes effective sealing. The research results could be used for reference for large-scale casing running and cementing construction in ultra deep wells, and effectively ensure the safe and efficient development of Shunbei Oil and Gas Field.

  • 顺北油气田储层埋深7 600~8 800 m,超深井钻井存在二叠系火成岩地层易发生井漏、志留系泥岩地层井眼易垮塌、古生界深部地层可钻性差等难题[1-8]。特别是,该油气田桑塔木组发育有火成岩侵入体(火成岩侵入体覆盖区域面积达117 km2),井眼坍塌压力非常高。因此,顺北油气田火成岩侵入体覆盖区超深井钻井时,既要解决二叠系、志留系地层和古生界深部地层存在的共性问题,又要解决火成岩侵入体带来的钻井难题。为了抑制火成岩侵入体覆盖区井眼垮塌,该油气田采取了提高钻井液密度的方法,并优化井身结构设计,对火成岩侵入体进行了专封,但效果不佳;完钻井眼直径仅120.7 mm,小井眼定向工具的故障率高,导致钻井效率较低。为此,笔者建立了地层三压力剖面,根据压力剖面确定了钻井必封点,优化了火成岩侵入体覆盖区超深井井身结构,将完钻井眼直径由120.7 mm增大为143.9 mm,研究了二叠系防漏技术、志留系井眼稳定技术、火成岩侵入体安全钻井技术及分层钻井提速技术,形成了顺北油气田火成岩侵入体覆盖区超深井优快钻井技术,现场应用表明,该集成技术提速效果明显。

    1)顺北油气田二叠系厚410~480 m,英安岩(厚约200 m)与凝灰岩互层微裂缝发育,易发生井漏。如XB1-1H井钻进二叠系地层时发生井漏25次,漏失钻井液2 245.4 m3,漏失水泥浆260.8 m3,处理井下复杂情况时间长,导致钻井周期延长45.96 d。

    2)顺北油气田志留系地层黏土矿物含量6%~29%,以伊/蒙混层和伊利石为主,裂缝宽度1.188~1.836 μm,属硬脆性泥岩,易垮塌。如XB1井钻遇志留系地层后阻卡频发,划眼处理22.1 d,平均井径扩大率达23.14%。

    3)顺北油气田奥陶系桑塔木组含火成岩侵入体,地层坍塌压力高,钻井中极易发生应力垮塌。如XB1井在五开钻入侵入体后频繁蹩停顶驱,为抑制侵入体井段掉块,将钻井液密度由1.38 kg/L提高至1.86 kg/L,但随即发生了井漏。

    4)顺北油气田前期完钻井眼直径为120.7 mm,小井眼所用的钻具柔性大,井下振动剧烈,且井底温度高达170 ℃,小井眼降温能力差,导致现场测量仪器故障率达到60%以上。

    5)顺北油气田古生界深部地层岩石软硬交错,岩石强度大于100 MPa,可钻性差,严重影响机械钻速。

    针对顺北油气田奥陶系桑塔木组火成岩侵入体带来的钻井难题,以及该油气田存在的志留系泥岩地层易塌、二叠系火成岩地层易漏和古生界深部地层可钻性差等问题,开展了井身结构优化和优快钻井配套技术研究。具体思路是:先求取地层三压力剖面,确定必封点和套管序列,以扩大完钻井眼直径、使之能够使用常规定向工具为目的,优化形成火成岩侵入体覆盖区井身结构;然后,在优化井身结构的基础上,配套二叠系地层防漏、志留系地层井眼稳定、火成岩侵入体安全钻井技术和分层提速技术。顺北油气田火成岩侵入体覆盖区超深井钻井中集成应用以上配套技术,以解决各种钻井难题,提高机械钻速。

    为了给井身结构优化提供依据,采用地层压力计算软件GMI,结合顺北油气田火成岩侵入体覆盖区的测井资料、钻井资料及测试资料,计算了该区域地层的三压力剖面,结果见表1

    表  1  火成岩侵入体覆盖区地层三压力剖面
    Table  1.  Formation tri-pressure profile of igneous invasion
    地层位置深度/m当量密度/(kg·L–1
    孔隙压力坍塌压力破裂压力
    火成岩侵入体以上地层0~6 9051.01~1.211.02~1.381.85~2.36
    火成岩侵入体6 905~6 9451.02~1.091.55~1.651.94~2.10
    火成岩侵入体底部至一间房组顶部6 945~7 2591.02~1.151.05~1.161.85~2.18
    一间房组7 259~7 3931.10~1.181.07~1.151.85~2.14
    下载: 导出CSV 
    | 显示表格

    表1可知:各地层孔隙压力正常,不存在异常高压;火成岩侵入体地层坍塌压力异常,当量密度高达1.55~1.65 kg/L。

    顺北油气田奥陶系桑塔木组火成岩侵入体地层坍塌压力高,而志留系地层承压能力较低,不能在同一开次揭示,因此确定侵入体顶部为必封点。同时,碳酸盐岩裂缝性、缝洞型油藏易发生井漏,为满足储层测试条件和保障井控安全,确定目的层顶部为必封点。

    根据地层三压力剖面和必封点位置,火成岩侵入体覆盖区超深井设计采用四开井身结构。为提高定向钻井效率,将四开井眼直径由120.7 mm优化为143.9 mm,钻头直径和套管序列则由目的层向上逐级进行反推[1-2, 9-10]。三开井段,采用ϕ190.5 mm钻头钻进,ϕ168.3 mm套管封隔火成岩侵入体及目的层以上地层(套管内径要求能够通过ϕ143.9 mm钻头);二开井段,用ϕ269.9 mm钻头钻进,ϕ219.1 mm套管封隔火成岩侵入体以上地层(套管内径要求能通过ϕ190.5 mm钻头);一开井段,采用ϕ374.7 mm钻头钻进,ϕ298.5 mm套管封隔浅表地层(套管内径要能通过ϕ269.9 mm钻头)。火成岩侵入体覆盖区超深井原井身结构和优化后的井身结构(新井身结构)见表2

    表  2  火成岩侵入体覆盖区超深井优化前后的井身结构
    Table  2.  The original casing program and the casing program in igneous invasion coverage area
    开钻
    次序
    原井身结构新井身结构
    钻头直径/
    mm
    套管直径/
    mm
    下深/
    m
    钻头直径/
    mm
    套管直径/
    mm
    下深/
    m
    一开346.1273.12 000374.7298.51 500
    二开250.9193.76 500269.9219.16 500
    三开165.1139.77 400190.5168.37 400
    四开120.7143.9
    下载: 导出CSV 
    | 显示表格

    表2可知,与原井身结构相比,新井身结构中的完钻井眼直径增大为143.9 mm,采用常规钻杆、测量仪器和螺杆钻具即可施工,并可满足地质资料录取及后期完井的要求。

    顺北油气田火成岩侵入体覆盖区不同地层的岩性特征不同,超深井钻井时应针对地层岩性特征采用不同的钻井提速技术。

    顺北油气田二叠系为英安岩、凝灰岩互层,裂缝发育,易井漏,漏失压力较低,应以预防为主[7-11],由“堵漏为主”转变为“以防为主,防堵结合”。

    钻进前封堵微裂缝,强化井壁稳定性。通过室内封堵评价试验,得到封堵剂配方:2%超细碳酸钙+1%竹纤维+1%单向压力封堵剂+2%阳离子沥青+2%纳米乳液。

    钻进时采用低密度(1.23~1.25 kg/L)、低塑性黏度(15~20 mPa·s)、低切力(4~6 Pa)的钻井液,并采用低排量(30~33 L/s),利用固控设备控制钻井液固相含量,控制起下钻速度,避免产生较大的激动压力,使井底压力小于漏失压力。起钻前注入10%~15%封闭浆(主要配方为1%聚合物凝胶+3%竹纤维+2%沥青+2%单向压力封堵剂+2%SQD-98(细)+1%CXD),避免起下钻过程中发生井漏。

    顺北油气田志留系地层微裂缝发育,黏土矿物含量高达29.0%,以伊/蒙混层和伊利石为主。该类硬脆性泥岩易坍塌掉块,钻井液滤液进入裂缝会增大膨胀压力和发生水敏垮塌。

    为降低液相侵入量,保证井壁稳定,采用“抑制水化+成膜隔离”协同防塌的理念,优选成膜剂、强抑制聚胺复配KCl[12],形成了钾胺基聚磺成膜钻井液,其主要配方为1.0%成膜剂+2.0%乳化沥青+0.5%聚阴离子纤维素+5.0%KCl+0.8%聚胺抑制剂+2.0%磺化酚醛树脂+3.0%褐煤树脂。该钻井液的岩屑滚动回收率为93.7%,页岩膨胀率为1.76%。

    顺北油气田奥陶系桑塔木组火成岩侵入体为岩浆向上侵入而形成的岩石,泊松比0.206~0.268,弹性模量29.1~37.9 MPa,抗压强度普遍高于150 MPa,坍塌压力系数1.55~1.65,体现出硬脆性岩石的力学特征[13]。火成岩会对钻头造成严重的损伤,且井壁极易发生垮塌掉块。

    火成岩在冷却过程中会形成微裂缝,防塌的重点是封堵微裂缝,阻止和减缓孔隙压力传递。为此,钻井液中加入2.0%~3.0%沥青类材料+2.0%超细碳酸钙+0.5%~1.0%PB-1+5.0%强封堵剂,以增强钻井液的封堵性能。钻进火成岩侵入体前,钻井液密度调整为1.65 kg/L,强化应力支撑;钻进过程中及时采用漏斗黏度大于120 s的稠浆塞携带井下掉块,工程上采用“进一退二”的方式钻进,以避免发生井下故障。

    采用测井参数反演,结合室内试验数据,获取了各层位岩石的抗压强度、可钻性级值等岩石力学参数,进行了PDC钻头优选和钻井工艺研究[14-16],在此基础上形成了顺北油气田火成岩侵入体覆盖区超深井分层钻井提速技术。

    二叠系以上地层抗压强度40~80 MPa,可钻性级值2~5,为软—中硬地层,采用“PDC钻头+螺杆钻具”快速钻进。选用五刀翼、ϕ19.0 mm切削齿的PDC钻头,增强其攻击性和防泥包功能。

    二叠系火成岩地层抗压强度90~160 MPa,可钻性级值6~7,为硬—极硬地层,选用五刀翼、ϕ13.0 mm切削齿的PDC钻头与扭力冲击器配合使用,以减少井下振动。

    二叠系至火成岩侵入体上部为砂泥岩互层,地层软硬交错,抗压强度80~150 MPa,可钻性级值5~7,属于硬地层,选用五刀翼、ϕ16.0 mm切削齿的PDC钻头与等壁厚大扭矩螺杆配合使用,以达到提速的目的。

    火成岩侵入体抗压强度140~170 MPa,可钻性级值7~8,为极硬地层,选用进口镶齿牙轮钻头或HJ637牙轮钻头,配硬质合金圆偏楔齿并进行梯度硬质合金处理,强化金刚石保径和掌背扶正块。

    火成岩侵入体以下地层抗压强度70~150 MPa,可钻性级值4~7,为硬地层,选用五刀翼、ϕ13.0 mm切削齿的PDC钻头与螺杆钻具配合使用,以达到提速的目的。

    顺北油气田火成岩侵入体覆盖区超深井优快钻井技术在XB1-11H井等7口超深井中进行了应用,与未用该技术的XB1井相比,完钻井眼直径由120.7 mm扩大至143.9 mm,钻井周期缩短了94 d,机械钻速提高了1.3 m/h。

    5口井应用了二叠系防漏技术。在钻井液中加入1%~2%不同粒径的超细碳酸钙和1%~2%竹纤维,采用随钻防漏方式钻穿二叠系地层,钻井液的黏度和切力保持在较低的状态,井底循环当量密度为1.32 kg/L。5口井钻进过程中均未发生井漏,而未应用该技术的邻井均出现不同程度的漏失。

    7口井应用了志留系井眼稳定技术。采用密度1.26~1.32 kg/L的钻井液,并加入1.0%~1.5%纳米乳液成膜剂+5.0%~7.0%KCl+0.5%~1.0%聚胺抑制剂,强化聚胺、氯化钾协同抑制作用和纳米乳液成膜封堵性能。7口井平均井径扩大率仅为9.01%(前期井眼扩大率达16.05%),且钻进及中完过程中未出现井下复杂情况。

    7口井应用了火成岩侵入体安全钻井技术。通过加入超细碳酸钙、防塌沥青、变形封堵剂,钻井液密度由1.70~1.86 kg/L降至1.60~1.65 kg/L。7口井钻井期间未发生阻卡,扭矩正常,降低了高密度钻井液条件下的岩石压实效应。

    7口井应用了分层提速技术。不同地层采用不同特点的钻头与提速工具配合实现提速,7口井平均机械钻速由4.2 m/h提高至5.5 m/h,提高了31.0%。三开ϕ190.5 mm井段应用ϕ16.0 mm尖圆齿钻头与等壁厚螺杆配合,机械钻速由2.1 m/h提高至3.1 m/h,提高了47.6%。

    1)在根据地层三压力剖面确定必封点的基础上,优化了顺北油气田火成岩侵入体覆盖区超深井井身结构,将完钻井眼直径由120.7 mm增大至143.9 mm,提高了定向钻井时效。

    2)顺北油气田二叠系裂缝性地层易井漏,坚持“以防为主,防堵结合”的思路,采用低密度、低黏切的钻井液低排量钻进,遏制了井漏的发生。

    3)根据“抑制水化+成膜隔离”的协同防塌理念,优选成膜剂,并复配聚胺抑制剂和KCl,解决了顺北油气田钻进志留系水敏性、硬脆性泥岩时易垮塌的问题。

    4)顺北油气田奥陶系桑塔木组火成岩侵入体井眼易垮塌,通过采用专封结构和加强封堵防塌,配合稠浆塞洗井和细化工程措施,实现了火成岩侵入体井段安全钻进。

    5)根据不同地层的岩石力学参数,优选PDC钻头和钻井工艺,形成了顺北油气田火成岩侵入体覆盖区超深井分层钻井提速技术,现场应用后机械钻速大幅提高。

  • 图  1   顺北鹰1井二开中完井身结构示意

    Figure  1.   Casing program of the second spudding for Well SBY-1

    图  2   ϕ339.7 mm分级注水泥器结构示意

    Figure  2.   ϕ339.7 mm stage collar structure diagram

    表  1   不同密度复合低密度水泥浆的基本性能

    Table  1   Properties of composite low-density cement slurry with different densities

    密度/
    (kg·L–1
    温度/
    ϕ600/ϕ300/ϕ200/ϕ100/ϕ6/ϕ3流动度/
    cm
    稠化(过渡)时间/
    min
    上下层密度差/
    (kg·L–1
    API滤失量/
    mL
    抗压强度/MPa
    24 h48 h
    1.609087/52/39/22/5/423495(3)0.01307.217.6
    1.559095/60/44/26/4/322439(2)0.02326.416.2
    1.5090116/70/51/31/5/321484(3)0.02365.515.2
    1.4590130/79/58/35/5/321463(5)0.03444.114.6
    下载: 导出CSV

    表  2   一级固井排量设计

    Table  2   Design of primary cementing displacement

    浆体密度/(kg·L–1ϕ600/ϕ300/ϕ200/ϕ100/ϕ6/ϕ3nK/(Pa·sn塑性黏度/(mPa·s)动切力/Pa紊流排量/(L·s–1临界流速/(m·s–1
    隔离液1.4559/32/18/10/3/20.880.072.56 0.02731.230.47
    一级领浆1.6087/52/39/22/5/40.780.200.053.5881.801.23
    一级尾浆1.90201/135/108/65/8/70.661.100.1115.33 187.60 2.83
    下载: 导出CSV

    表  3   一级固井入井水泥浆主要性能

    Table  3   Main properties of primary cementing slurry

    浆体密度/(kg·L–1滤失量/mL析水量/mL稠化时间/min流动度/cm24 h抗压强度/MPa
    领浆1.605414182410.2
    尾浆1.883612882119.6
    下载: 导出CSV
  • [1] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13.

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.

    [2] 董小虎,商森. 顺北区块超深120 mm小井眼定向技术难点及对策[J]. 西部探矿工程, 2018, 30(1): 47–50. doi: 10.3969/j.issn.1004-5716.2018.01.017

    DONG Xiaohu, SHANG Sen. Difficulties and countermeasures of ultra-deep 120 mm slim hole orientation technical in Shunbei Block[J]. West-China Exploration Engineering, 2018, 30(1): 47–50. doi: 10.3969/j.issn.1004-5716.2018.01.017

    [3] 韩新利, 史交齐.深井用厚壁套管接箍强度校核[C]//中国石油学会深井钻井试油及装备术研讨会, 成都, 1998–03–31.

    HAN Xinli, SHI Jiaoqi. Strength checking of thick wall casing couplings for deep wells[C]// Symposium of deep well drilling test and equipment technical seminar of Chinese Petroleum Society, Chengdu, March 31, 1998.

    [4] 陈开宇. 超深井套管接箍的安全性评价[J]. 南方农机, 2018, 49(21): 246–247. doi: 10.3969/j.issn.1672-3872.2018.21.203

    CHEN Kaiyu. Safety evaluation of casing coupling in ultra deep wells[J]. South Agricultural Machinery, 2018, 49(21): 246–247. doi: 10.3969/j.issn.1672-3872.2018.21.203

    [5] 宋执武,陈鹏举,高德利,等. “上提下冲”下套管作业方法的力学分析[J]. 石油管材与仪器, 2016, 2(6): 45–48. doi: 10.3969/j.issn.1004-9134.2016.06.011

    SONG Zhiwu, CHEN Pengju, GAO Deli, et al. Mechanics analysis of “lift and free fall” casing running method[J]. Petroleum Instruments, 2016, 2(6): 45–48. doi: 10.3969/j.issn.1004-9134.2016.06.011

    [6] 王治国,周鹏成,徐璧华,等. 固井安全下套管速度分析[J]. 江汉石油职工大学学报, 2014, 27(6): 20–22. doi: 10.3969/j.issn.1009-301X.2014.06.007

    WANG Zhiguo, ZHOU Pengcheng, XU Bihua, et al. Analysis of casing velocity in cementing safety[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2014, 27(6): 20–22. doi: 10.3969/j.issn.1009-301X.2014.06.007

    [7] 吴达,曾祥擂. 柯深1井超长大套管特殊作业技术[J]. 天然气工业, 1993, 13(6): 90–91.

    WU Da, ZENG Xianglei. Special operation technology of extra long casing in Well Keshen 1[J]. Natural Gas Industry, 1993, 13(6): 90–91.

    [8] 康海涛,白俊成,蔡云平,等. 马深1井超深小钻孔井眼准备及套管下入技术[J]. 石油钻采工艺, 2016, 38(5): 583–587.

    KANG Haitao, BAI Juncheng, CAI Yunping, et al. The preparing and running casing technology of super deep and slim hole in Well Mashen-1[J]. Oil Drilling & Production Technology, 2016, 38(5): 583–587.

    [9] 李思彬. 塔里木山前井ϕ365.13 mm大尺寸套管下入技术[J]. 石化技术, 2018, 25(8): 318. doi: 10.3969/j.issn.1006-0235.2018.08.271

    LI Sibin. ϕ365.13 mm large-scale casing running technology of in Tarim piedmont well[J]. Petrochemical Industry Technology, 2018, 25(8): 318. doi: 10.3969/j.issn.1006-0235.2018.08.271

    [10] 张军. 易漏失井固井前井眼准备技术[J]. 民营科技, 2017(2): 35. doi: 10.3969/j.issn.1673-4033.2017.02.034

    ZHANG Jun. Well preparation technology for lost circulation wells before cementing[J]. Non-State Running Science & Technology Enterprises, 2017(2): 35. doi: 10.3969/j.issn.1673-4033.2017.02.034

    [11] 陈开宇.超深下套管及下套管工具的受力研究[D].成都: 西南石油大学, 2017.

    CHEN Kaiyu. Research on the stress of casing running and tools in super deep[D]. Chengdu: Southwest Petroleum University, 2017.

    [12] 刘崇建, 黄柏宗.油气井注水泥理论与应用[M].北京: 石油工业出版社, 2001: 401–408.

    LIU Chongjian, HUANG Bozong. Theory and application of cementing in oil and gas wells[M]. Beijing: Petroleum Industry Press, 2001: 401–408.

    [13] 王东. 塔深1井非常规套管下入技术[J]. 石油钻采工艺, 2005, 27(6): 10–12. doi: 10.3969/j.issn.1000-7393.2005.06.004

    WANG Dong. Technology of unconventionality casing running in TS1 Well[J]. Oil Drilling & Production Technology, 2005, 27(6): 10–12. doi: 10.3969/j.issn.1000-7393.2005.06.004

    [14] 支亚靓.库车山前固井下套管防漏技术研究[D].成都: 西南石油大学, 2015.

    ZHI Yaliang. Research on leakage prevention technology of cementing casing in Kuqa Piedmont[D]. Chengdu: Southwest Petroleum University, 2015.

  • 期刊类型引用(4)

    1. 张玉彬. 钻井液水合物分解抑制性评价试验方法研究. 能源化工. 2024(02): 44-49 . 百度学术
    2. 张逸群,胡萧,武晓亚,李根生,田守嶒,赵帅. 旋转射流冲蚀天然气水合物试验及数值模拟研究. 石油钻探技术. 2022(03): 24-33 . 本站查看
    3. 王胜,谌强,袁学武,华绪,陈礼仪. 适用于低温地层的纳米复合水泥浆体系研究. 石油钻探技术. 2021(06): 73-80 . 本站查看
    4. 郑成胜,蓝强,徐运波,赵怀珍. 天然气水合物抑制剂YHHI-1的合成及评价. 石油钻采工艺. 2020(06): 708-713 . 百度学术

    其他类型引用(4)

图(2)  /  表(3)
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  486
  • PDF下载量:  99
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-12-08
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2019-12-31

目录

/

返回文章
返回