Ultra-Deep Well Drilling Technology in the Igneous Invasion Coverage Area of the Shunbei Oil and Gas Field
-
摘要:
顺北油气田火成岩侵入体覆盖区超深井钻井时,既存在二叠系火成岩井漏、志留系泥岩垮塌和古生界深部地层可钻性差等问题,还存在因火成岩侵入体地层坍塌压力高带来的钻井难题。前期,该油气田为了解决火成岩侵入体覆盖区超深井井眼垮塌的问题,提高了钻井液密度,并对火成岩侵入体进行了专封,但效果较差,而且超深井完钻井眼直径仅为120.7 mm,定向工具故障率高,导致钻井效率较低。为此,建立了地层三压力剖面,分析了钻井必封点及套管序列,优化了火成岩侵入体覆盖区超深井井身结构,将完钻井眼直径由120.7 mm增大为143.9 mm,并研究应用了二叠系防漏技术、志留系井壁稳定技术、火成岩侵入体安全钻井技术及分层钻井提速技术,形成了顺北油气田火成岩侵入体覆盖区超深井优快钻井技术。该优快钻井技术在7口超深井中进行了现场应用,钻井周期大幅缩短,机械钻速明显提高,表明其可以解决现场施工存在的技术难题,具有推广应用价值。
Abstract:When drilling ultra-deep wells in the igneous invasion area of the Shunbei Oil and Gas Field, challenges such as lost circulation in the Permian igneous rock, borehole collapse in the Silurian mudstone and poor drillability in deep Paleozoic strata are commonly encountered. In addition, the large collapse pressure of igneous invasion layer also brings new drilling problems. Previously, this oil and gas field tried to increase the drilling fluid density to alleviate the borehole collapse in igneous invasion and optimize the casing program design to specifically seal the igneous invasion, but the effect was limited. The size of completion borehole is only 120.7 mm, and the failure rate of directional drilling tools is high, which leads to low drilling efficiency. In order to solve the above-mentioned common problems and new problems in the ultra-deep well drilling of this area, a formation tri-pressure profile was established, the necessary sealing points and casing sequence were analyzed, and the original completion borehole size was expanded from ϕ120.7 mm to ϕ143.9 mm, hence optimizing the casing program in the igneous invasion coverage area. The Permian leakage prevention technology, the Silurian borehole stabilization technology, igneous invasion safety drilling technology and zonal drilling acceleration technology were developed and integrated into the ultra-deep well drilling technology for rock invasion coverage area of the Shunbei Oil and Gas Field. This integrated technology was successfully applied in 7 ultra-deep wells, which reduced the drilling cycle significantly and improved the ROP largely, indicating that it could solve practical problems properly and is of significant application value.
-
-
表 1 火成岩侵入体覆盖区地层三压力剖面
Table 1 Formation tri-pressure profile of igneous invasion
地层位置 深度/m 当量密度/(kg·L–1) 孔隙压力 坍塌压力 破裂压力 火成岩侵入体以上地层 0~6 905 1.01~1.21 1.02~1.38 1.85~2.36 火成岩侵入体 6 905~6 945 1.02~1.09 1.55~1.65 1.94~2.10 火成岩侵入体底部至一间房组顶部 6 945~7 259 1.02~1.15 1.05~1.16 1.85~2.18 一间房组 7 259~7 393 1.10~1.18 1.07~1.15 1.85~2.14 表 2 火成岩侵入体覆盖区超深井优化前后的井身结构
Table 2 The original casing program and the casing program in igneous invasion coverage area
开钻
次序原井身结构 新井身结构 钻头直径/
mm套管直径/
mm下深/
m钻头直径/
mm套管直径/
mm下深/
m一开 346.1 273.1 2 000 374.7 298.5 1 500 二开 250.9 193.7 6 500 269.9 219.1 6 500 三开 165.1 139.7 7 400 190.5 168.3 7 400 四开 120.7 143.9 -
[1] 易浩,杜欢,贾晓斌,等. 塔河油田及周缘超深井井身结构优化设计[J]. 石油钻探技术, 2015, 43(1): 75–81. YI Hao, DU Huan, JIA Xiaobin, et al. The optimal design of a casing program for ultra-deep wells in the Tahe Oilfield and its periphery[J]. Petroleum Drilling Techniques, 2015, 43(1): 75–81.
[2] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
[3] 刘彪,潘丽娟,易浩,等. 顺北含辉绿岩超深井井身结构优化设计[J]. 石油钻采工艺, 2016, 38(3): 296–301. LIU Biao, PAN Lijuan, YI Hao, et al. Casing program optimization of ultra-deep well with diabase reservoir in Shunbei Block[J]. Oil Drilling & Production Technology, 2016, 38(3): 296–301.
[4] 牛晓,潘丽娟,甄玉辉,等. SHB1-6H井长裸眼钻井液技术[J]. 钻井液与完井液, 2016, 33(5): 30–34. NIU Xiao, PAN Lijuan, ZHEN Yuhui, et al. Drilling fluid technology for long open hole section of Well SHB1-6H[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 30–34.
[5] 刘彪,潘丽娟,张俊,等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术, 2016, 44(6): 11–16. LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11–16.
[6] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术, 2016, 44(6): 17–23. JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area,Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23.
[7] 潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007 PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the permian igneous rocks in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007
[8] 张平. 顺北蓬1井ϕ444.5 mm长裸眼井筒强化钻井液技术[J]. 石油钻探技术, 2018, 46(3): 27–33. ZHANG Ping. Wellbore enhancing technology for ϕ444.5 mm openhole section in Well SHBP1 by means of drilling fluid optimization[J]. Petroleum Drilling Techniques, 2018, 46(3): 27–33.
[9] 高德利.复杂井工程力学与设计控制技术[M].北京: 石油工业出版社, 2018: 65–78. GAO Deli. Downhole mechanics and design & control techniques in critical well engineering[M]. Beijing: Petroleum Industry Press, 2018: 65–78.
[10] 郑有成,刘素君,常洪渠. 再论采用非常规套管程序改进深井超深井井身结构设计[J]. 钻采工艺, 2010, 33(3): 1–3. ZHENG Youcheng, LIU Sujun, CHANG Hongqu. Using unconventional casing program to improve bore frame design of deep and ultra-deep well[J]. Drilling & Production Technology, 2010, 33(3): 1–3.
[11] 刘四海,崔庆东,李卫国. 川东北地区井漏特点及承压堵漏技术难点与对策[J]. 石油钻探技术, 2008, 36(3): 20–23. doi: 10.3969/j.issn.1001-0890.2008.03.005 LIU Sihai, CUI Qingdong, LI Weiguo. Circulation loss characteristics and challenges and measures to plug under pressure in northeast Sichuan area[J]. Petroleum Drilling Techniques, 2008, 36(3): 20–23. doi: 10.3969/j.issn.1001-0890.2008.03.005
[12] 孔勇,杨小华,徐江,等. 抗高温强封堵防塌钻井液体系研究与应用[J]. 钻井液与完井液, 2016, 33(6): 17–22. doi: 10.3969/j.issn.1001-5620.2016.06.003 KONG Yong, YANG Xiaohua, XU Jiang, et al. Study and application of a high temperature drilling fluid with strong plugging capacity[J]. Drilling Fluid & Completion Fluid, 2016, 33(6): 17–22. doi: 10.3969/j.issn.1001-5620.2016.06.003
[13] 杨红运,曹树刚,洛锋,等. 辉绿岩瞬态卸压下强度及变形特性数值模拟[J]. 武汉理工大学学报, 2013, 35(8): 89–93. doi: 10.3963/j.issn.1671-4431.2013.08.018 YANG Hongyun, CAO Shugang, LUO Feng, et al. Numerical simulation of strength and deformation characteristics of diabase under transient unloading[J]. Journal of Wuhan University of Technology, 2013, 35(8): 89–93. doi: 10.3963/j.issn.1671-4431.2013.08.018
[14] 高德利,潘起峰,张武辇. 南海西江大位移井钻头选型技术研究[J]. 石油钻采工艺, 2004, 26(2): 1–4. doi: 10.3969/j.issn.1000-7393.2004.02.001 GAO Deli, PAN Qifeng, ZHANG Wunian. Study on drill bit selections for Xijiang extended-reach wells in South China Sea[J]. Drinlling & Production Technology, 2004, 26(2): 1–4. doi: 10.3969/j.issn.1000-7393.2004.02.001
[15] 张辉,高德利. 用主成份投影法评价和优选钻头[J]. 石油钻探技术, 2006, 34(1): 39–41. doi: 10.3969/j.issn.1001-0890.2006.01.011 ZHANG Hui, GAO Deli. Evaluation and selection of bits based on the principal component projection method[J]. Petroleum Drilling Techniques, 2006, 34(1): 39–41. doi: 10.3969/j.issn.1001-0890.2006.01.011
[16] 于洋,南玉民,李双贵,等. 顺北油田古生界钻井提速技术[J]. 断块油气田, 2019, 26(6): 780–783. YU Yang, NAN Yumin, LI Shuanggui, et al. Technology for increasing drilling speed of paleozoic stratum in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 780–783.
-
期刊类型引用(10)
1. 李凡,李大奇,刘金华,何仲,张杜杰. 顺北油田二叠系防漏堵漏技术进展及发展建议. 长江大学学报(自然科学版). 2024(02): 76-83 . 百度学术
2. 李凡,李大奇,金军斌,张杜杰,方俊伟,王伟吉. 顺北油气田辉绿岩地层井壁稳定钻井液技术. 石油钻探技术. 2023(02): 61-67 . 本站查看
3. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 . 百度学术
4. 李文霞,王居贺,王治国,杨卫星,史玉才. 顺北油气田超深高温水平井井眼轨迹控制技术. 石油钻探技术. 2022(04): 18-24 . 本站查看
5. 刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 . 本站查看
6. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
7. 张煜,李海英,陈修平,卜旭强,韩俊. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效. 石油与天然气地质. 2022(06): 1466-1480 . 百度学术
8. 李新勇,纪成,王涛,郭天魁,王晓之,曲占庆. 顺北油田上浮剂封堵及泵注参数实验研究. 断块油气田. 2021(01): 139-144 . 百度学术
9. 邱春阳,张翔宇,赵红香,王雪晨,张海青,陈二丁. 顺北区块深层井壁稳定钻井液技术. 天然气勘探与开发. 2021(02): 81-86 . 百度学术
10. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 1155
- HTML全文浏览量: 467
- PDF下载量: 140
- 被引次数: 12