顺北碳酸盐岩裂缝性气藏安全钻井关键技术

王建云, 杨晓波, 王鹏, 范红康

王建云, 杨晓波, 王鹏, 范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术, 2020, 48(3): 8-15. DOI: 10.11911/syztjs.2020003
引用本文: 王建云, 杨晓波, 王鹏, 范红康. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术, 2020, 48(3): 8-15. DOI: 10.11911/syztjs.2020003
WANG Jianyun, YANG Xiaobo, WANG Peng, FAN Hongkang. Key Technologies for the Safe Drilling of Fractured Carbonate Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8-15. DOI: 10.11911/syztjs.2020003
Citation: WANG Jianyun, YANG Xiaobo, WANG Peng, FAN Hongkang. Key Technologies for the Safe Drilling of Fractured Carbonate Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8-15. DOI: 10.11911/syztjs.2020003

顺北碳酸盐岩裂缝性气藏安全钻井关键技术

基金项目: 中国石化科技攻关项目“特深层油气钻井工程关键技术与工具”(编号:P17049-3)和“顺北油气田一区优快钻井技术研究”(编号:P18021-1)部分研究内容
详细信息
    作者简介:

    王建云(1974—),男,湖北浠水人,1997年毕业于西南石油学院石油工程专业,高级工程师,主要从事钻井完井工程技术研究与相关管理工作。E-mail:wjianyun.xbsj@sinopec.com

  • 中图分类号: TE28+3

Key Technologies for the Safe Drilling of Fractured Carbonate Gas Reservoirs in the Shunbei Oil and Gas Field

  • 摘要:

    为了解决顺北油气田碳酸盐岩裂缝性气藏钻井过程中溢流和漏失同存的问题,保证钻井安全,分析了其溢流和漏失同存的原因,制定了首先暂堵裂缝阻止气体侵入井筒、然后在气体侵入井筒的情况下控制气体侵入量和上窜速度以保证钻井安全的技术思路,并将裂缝性气藏暂堵技术、控压钻井技术和高温气滞塞技术进行集成,形成了顺北碳酸盐岩裂缝性气藏安全钻井关键技术。应用该关键技术时,先用裂缝性气藏暂堵技术阻止气体进入井筒;发现气体侵入井底时,用控压钻井技术控制气体侵入量;气体侵入井筒的情况下,用高温气滞塞技术降低气体上窜速度,保障钻井安全。顺北油气田在应用碳酸盐岩裂缝性气藏安全钻井关键技术后,解决了溢流和漏失同存的难题,提高了钻井速度,保证了钻井安全。

    Abstract:

    In order to solve the problems created by the coexistence of overflow and circulation lost during drilling through fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field and to ensure drilling safety, a technical solution was worked out by means of analyzing the causes of the coexistence of overflow and lost circulation in fractured carbonate gas reservoirs. According to this solution, the first thing to do is to temporarily block fractures that prevent gas invasion into the wellbore, and in the case of gas influx, it is necessary to control the amount of gas influx and the speed of gas channeling to ensure drilling safety. Based on this, tje key technologies for the safe drilling of fractured carbonate gas reservoirs involves integrating temporary blocking technology for fractured reservoirs, using MPD and implementing high temperature gas-block plugging. First, the temporary blocking technology for fractured gas reservoirs should be used to prevent gas from entering the wellbore. In case of gas influx occurs in the bottom hole, MPD should be used to control the influx amount, while high temperature gas-block plugging should be adopted to reduce the speed of gas channeling if the gas is found in the wellbore. After the application of such key technologies in the fractured carbonate gas reservoir in the Shunbei Oil and Gas Field, the coexistence of overflow and circulation lost was solved and drilling speed was increased and the drilling safety ensured.

  • 图  1   裂缝性气藏与常规气藏压力系统对比

    Figure  1.   Pressure system comparison between fractured gas reservoir and conventional gas reservoirs

    图  2   控压起钻时的井口回压控制情况

    Figure  2.   Wellhead pressure control during managed pressure POOH

    图  3   控压起钻时的井底压力控制情况

    Figure  3.   Bottom hole pressure control during managed pressure POOH

    表  1   顺北油气田碳酸盐岩裂缝性气藏与国内其他碳酸盐岩气藏地质条件对比

    Table  1   Geological condition comparison between fractured carbonate gas reservoir in the Shunbei Oil and Gas Field and the other carbonategas reservoirs in China

    区块埋藏深度/m地层压力/MPa地层温度/℃CO2含量,%H2S含量,%
    顺北6 600~8 30082.0~180.0170.0~238.01.17~9.360.004~0.160
    普光4 356~5 15755.0~61.0120.0~134.08.6415.160
    元坝6 710~7 16066.0~69.0145.0~158.07.50  5.140
    龙岗5 800~6 20052.0~63.0134.0~140.03.38  2.750
    克拉3 500~4 000  74.4104.00.650
    克深6 500~8 000113.0167.00.810
    下载: 导出CSV

    表  2   暂堵堵漏浆封堵性能评价结果

    Table  2   Evaluation on the plugging performance of temporary plugging slurry

    岩心缝宽/μm正向液驱压力/MPa正向气驱压力/MPa滤失量/mL反向气体突破压力/MPa
    130~50 15>8.00   0.6
    290~15015>7.50.5>3.5  
    3150~25015>8.00.11.0
    4210~35015>8.00.40.8
    5270~45015>7.50.20.6
    下载: 导出CSV

    表  3   低密度小球在不同黏度流体中的上升速度

    Table  3   Upward velocity of low density pellets in fluids with different viscosity

    测试流体六速旋转黏度计读数表观黏度/(mPa·s)静切力/Pa小球上窜速度/(mm·s−1
    ϕ600/ϕ300/ϕ200/ϕ100/ϕ6/ϕ3 初切力 终切力
    清水2/1/0/0/0/0  1.00 0 37.5
    高黏流体45/30/24/15/4/222.50.5 1.0  3.0
    低浓度高温气滞塞23/23/23/23/22/2211.58.0 12.0 0
     注:低密度小球的密度为0.4 kg/L,直径为1.0 mm;3种测试流体的密度均为1.0 kg/L。
    下载: 导出CSV

    表  4   抗高温提切剂性能评价结果

    Table  4   Evaluation on the performance of high temperature resistant shear strength-improving agent

    提切剂及加量条件六速旋转黏度计读数 静切力/Pa塑性黏度/(mPa·s)动切力Pa
    ϕ600/ϕ300/ϕ200/ϕ100/ϕ6/ϕ3 初切力 终切力
    1%HE300老化前31/19/14/8/1/0.5 0.25 0.2512 3.5
    老化后4/2/1/0.5/0/0 0 0   20  
    1%HEC老化前52/36/23/13/6/5 2.00 5.001610.0
    老化后5/3/2/1/0/0 0 0   2  0.5
    4%SMRM老化前24/20/19/16/9/8 4.00 6.00  4  8.0
    老化后14/13/13/13/16/16 8.00 13.00   1  6.0
     注:老化条件是在200 ℃下滚动16 h;六速旋转黏度计的读数是在50 ℃下测得的。
    下载: 导出CSV

    表  5   高温气滞塞在50和190 ℃下的流变性

    Table  5   Rheological properties of high temperature gas-block plug at 50 °C and 190 °C

    温度/℃六速旋转黏度计读数密度/(kg·L−1终切力Pa塑性黏度/(mPa·s)动切力/Pa
    ϕ600/ϕ300/ϕ200/ϕ100/ϕ6/ϕ3
      50144/119/104/76/20/311.05342547
    19050/4846/45/22/1815  223
     注:测试压力为4 MPa。
    下载: 导出CSV

    表  6   顺北油气田碳酸盐岩裂缝性气藏安全钻井模式

    Table  6   Safe drilling mode of fractured carbonate gas reservoir in the Shunbei Oil and Gas Field

    地层漏失气侵强度
    较强
    一间房组、
    上鹰山组
    旋转控制头旋转控制头
    控压节流管汇
    旋转控制头
    控压节流管汇
    回压泵
    PWD
    下鹰山组旋转控制头旋转控制头
    控压节流管汇
    旋转控制头
    控压节流管汇
    回压泵
    下载: 导出CSV
  • [1] 伍齐乔,李景瑞,曹飞,等. 顺北1井区奥陶系断溶体油藏岩溶发育特征[J]. 中国岩溶, 2019, 38(3): 444–449.

    WU Qiqiao, LI Jingrui, CAO Fei, et al. Characteristics of fault-karst carbonate reservoirs in the Shunbei No. 1 Well Block, Tarim Basin[J]. Carsologica Sinica, 2019, 38(3): 444–449.

    [2] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140–147.

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147.

    [3] 刘彪,潘丽娟,张俊,等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术, 2016, 44(6): 11–16.

    LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11–16.

    [4] 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062

    ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33. doi: 10.11911/syztjs.2019062

    [5] 李大奇, 曾义金,刘四海,等. 裂缝性地层承压堵漏模型建立及应用[J]. 科学技术与工程, 2018, 18(2): 79–85. doi: 10.3969/j.issn.1671-1815.2018.02.011

    LI Daqi, ZENG Yijin, LIU Sihai, et al. Wellbore strengthening model in fractured formation[J]. Science Technology and Engineering, 2018, 18(2): 79–85. doi: 10.3969/j.issn.1671-1815.2018.02.011

    [6] 罗发强,韩子轩,柴龙,等. 抗高温气滞塞技术的研究与应用[J]. 钻井液与完井液, 2019, 36(2): 165–169. doi: 10.3969/j.issn.1001-5620.2019.02.006

    LUO Faqiang, HAN Zixuan, CHAI Long, et al. Study and application of high temperature gas blocking plug[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 165–169. doi: 10.3969/j.issn.1001-5620.2019.02.006

    [7] 柴龙,林永学,金军斌,等. 塔河油田外围高温高压井气滞塞防气窜技术[J]. 石油钻探技术, 2018, 46(5): 40–45.

    CHAI Long, LIN Yongxue, JING Junbin, et al. Anti-gas channeling technology with gas-block plug for high temperature and high pressure wells in the periphery of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 40–45.

    [8] 宋巍,李永杰,靳鹏菠,等. 裂缝性储层控压钻井技术及应用[J]. 断块油气田, 2013, 20(3): 362–365.

    SONG Wei, LI Yongjie, JIN Pengbo, et al. MPD technology on fractured reservoir and its application[J]. Fault-Block Oil & Gas Field, 2013, 20(3): 362–365.

    [9] 贾红军,孟英峰,李皋,等. 钻遇多压力系统气层溢漏同存规律研究[J]. 断块油气田, 2012, 19(3): 359–363.

    JIA Hongjun, MENG Yingfeng, LI Hao, et al. Research on well kick accompanied with lost circulation during drilling of gas formation with multi-pressure system[J]. Fault-Block Oil & Gas Field, 2012, 19(3): 359–363.

    [10] 唐雪平,熊祖根,王鹏,等. 井下随钻压力测量技术研究[J]. 钻采工艺, 2019, 42(4): 1–4. doi: 10.3969/J.ISSN.1006-768X.2019.04.01

    TANG Xueping, XIONG Zugen, WANG Peng, et al. Research on down-hole pressure-while-drilling technology[J]. Drilling & Production Technology, 2019, 42(4): 1–4. doi: 10.3969/J.ISSN.1006-768X.2019.04.01

    [11] 何淼,柳贡慧,李军,等. 控压钻井井下双测点压力实时解释模型研究[J]. 石油机械, 2019, 47(10): 1–6.

    HE Miao, LIU Gonghui, LI Jun, et al. A real-time interpretation model for downhole pressure of dual measuring points in managed pressure drilling[J]. China Petroleum Machinery, 2019, 47(10): 1–6.

    [12] 王果. 基于三级反馈调节的控压钻井回压自动调控方法[J]. 石油钻采工艺, 2019, 41(4): 441–447.

    WANG Guo. Automatic backpressure control techniques of MPD drilling based on three-layer feedback regulation method[J]. Oil Drilling & Production Technology, 2019, 41(4): 441–447.

    [13] 周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术, 2019, 47(3): 68–74.

    ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74.

    [14] 刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术, 2020, 48(2): 23–28.

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.

    [15] 刘绘新, 李锋. 裂缝性储层井控技术体系探讨[C]//2009全国油气井工程科学研究新进展与石油钻井工程技术高级研讨会论文集.海口, 2009: 77–80.

    LIU Huixin, LI Feng. Discussion on well control technology system of fractured reservoir[C]//Proceedings of the national advanced Symposium on the new progress of oil and gas well engineering science and oil drilling engineering technology.Haikou, 2009: 77–80.

    [16] 舒刚,孟英峰,李皋,等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002

    SHU Gang, MENG Yingfeng, LI Gao, et al. Study on the mechanism of gravity displacement leakage and spray co-existence[J]. Petroleum Drilling Techniques, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002

    [17] 舒刚. 裂缝性地层钻井溢漏同存流动规律及模型研究[D]. 成都: 西南石油大学, 2012.

    SHU Gang. Study on the law and model of simultaneous flow of drilling spills in fractured formation[D]. Chengdu: Southwest Petroleum University, 2012.

    [18] 马宗金. 总结经验教训提高天然气井钻井井控能力[J]. 钻采工艺, 2004, 27(4): 1–5. doi: 10.3969/j.issn.1006-768X.2004.04.001

    MA Zongjin. Summing up experiences to improve well control ability of natural gas well[J]. Drilling & Production Technology, 2004, 27(4): 1–5. doi: 10.3969/j.issn.1006-768X.2004.04.001

    [19] 方俊伟,张翼,李双贵,等. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术[J]. 石油钻探技术, 2020, 48(2): 17–22.

    FANG Junwei, ZHANG Yi, LI Shuanggui, et al. Acid-soluble temporary plugging technology for ultra-deep fractured carbonate reservoirs in Block 1 of the Shunbei Area[J]. Petroleum Drilling Techniques, 2020, 48(2): 17–22.

    [20] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113–120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.

    [21] 侯士立,刘光艳,黄达全,等. 高滤失承压堵漏技术[J]. 钻井液与完井液, 2018, 35(1): 53–56.

    HOU Shili, LIU Guangyan, HUANG Daquan,et al. Lost circulation control with high filtration lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 53–56.

  • 期刊类型引用(12)

    1. 高书阳,薄克浩,张亚云,高宏,皇甫景龙. 川东北陆相页岩储层井壁失稳机理研究. 钻井液与完井液. 2025(02): 217-224 . 百度学术
    2. 高书阳. 苏北陆相页岩油储层井壁稳定性能评价. 科学技术与工程. 2024(22): 9350-9356 . 百度学术
    3. 傅玉,蒲杨. 长裸眼水平段超深井完井液密度对井壁稳定的重要性剖析. 天然气技术与经济. 2024(06): 15-19+63 . 百度学术
    4. 王显光,高书阳,褚奇,张亚云,王松,甄剑武. 不同流体介质条件下龙马溪组页岩井壁稳定性能评价. 长江大学学报(自然科学版). 2020(02): 45-52+5-6 . 百度学术
    5. 冯玉涛,邹江华,杜炳明,李家龙,万鹏. 龙马溪组页岩特性及用作高速公路路基填料的试验研究. 路基工程. 2019(03): 88-93 . 百度学术
    6. 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术. 石油钻探技术. 2019(02): 21-27 . 本站查看
    7. 邹春,兰凯,王爱宽,刘香峰,孔华. 涪陵页岩气井水平段一趟钻技术实践与认识. 内蒙古石油化工. 2019(06): 64-67 . 百度学术
    8. 冯玉涛,赵进锋,童卫东. 龙马溪组黑色页岩路堑边坡稳定性及其防护对策. 公路. 2019(11): 53-56 . 百度学术
    9. 洪国斌,陈勉,卢运虎,金衍. 川南深层页岩各向异性特征及对破裂压力的影响. 石油钻探技术. 2018(03): 78-85 . 本站查看
    10. 高书阳,豆宁辉,林永学,柴龙,刘锐. 川渝地区龙马溪组页岩储层水化特征评价方法. 石油钻探技术. 2018(03): 20-26 . 本站查看
    11. 唐文泉,高书阳,王成彪,甄剑武,陈晓飞,柴龙. 龙马溪页岩井壁失稳机理及高性能水基钻井液技术. 钻井液与完井液. 2017(03): 21-26 . 百度学术
    12. 姜逸明,张定宇,李大华,陈朝刚,成俊,邱以钢,朱瑜. 重庆地区页岩气钻井井壁稳定主控因素研究. 中国石油勘探. 2016(05): 19-25 . 百度学术

    其他类型引用(5)

图(3)  /  表(6)
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  398
  • PDF下载量:  146
  • 被引次数: 17
出版历程
  • 收稿日期:  2019-08-18
  • 修回日期:  2020-02-20
  • 网络出版日期:  2020-04-13
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回