考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价

李宪文, 刘顺, 陈强, 苏玉亮, 盛广龙

李宪文, 刘顺, 陈强, 苏玉亮, 盛广龙. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术, 2019, 47(6): 73-82. DOI: 10.11911/syztjs.2019126
引用本文: 李宪文, 刘顺, 陈强, 苏玉亮, 盛广龙. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术, 2019, 47(6): 73-82. DOI: 10.11911/syztjs.2019126
LI Xianwen, LIU Shun, CHEN Qiang, SU Yuliang, SHENG Guanglong. An Evaluation of the Stimulation Effect of Horizontal Well Volumetric Fracturing in Tight Reservoirs with Complex Fracture Networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73-82. DOI: 10.11911/syztjs.2019126
Citation: LI Xianwen, LIU Shun, CHEN Qiang, SU Yuliang, SHENG Guanglong. An Evaluation of the Stimulation Effect of Horizontal Well Volumetric Fracturing in Tight Reservoirs with Complex Fracture Networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73-82. DOI: 10.11911/syztjs.2019126

考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价

基金项目: 国家科技重大专项“鄂尔多斯盆地致密油开发示范工程”(编号:2017ZX05069)资助
详细信息
    作者简介:

    李宪文(1963—),男,河北沧州人,1985年毕业于大庆石油学院采油工程专业,2011年获西安交通大学材料科学与工程专业博士学位,教授级高级工程师,主要从事油气田开发方面的研究与管理工作。E-mail:lxw_cq@petrochina.com.cn

  • 中图分类号: TE357.1+1

An Evaluation of the Stimulation Effect of Horizontal Well Volumetric Fracturing in Tight Reservoirs with Complex Fracture Networks

  • 摘要:

    提高储层压裂改造效果对经济有效开发致密油藏至关重要,评价压裂改造效果需要考虑复杂裂缝网络分布特征。基于微地震数据,采用分形随机缝网生成算法反演得到了次生裂缝分布特征,考虑压裂水平井近井地带的物性变化,建立了压裂水平井多区渗流数学模型,并进行了求解。基于该模型研究了次生裂缝复杂程度对流体流动的影响,研究结果表明:次生裂缝复杂程度对整个流动阶段均有较大影响,分形维数越大,产油量越高;改造带宽越大,拟稳态窜流早期线性流、双线性流持续时间越长;次生裂缝分布的压裂改造区域是生产早中期的主力区域,其产油量贡献度也最大;实际生产过程中应尽量增大改造区域体积,并使与改造区域不相邻区域的体积最小,以提高生产井的早期产油量、最大程度地提高储层采收率。研究结果可为致密油藏体积压裂效果评价及压裂优化设计提供理论依据。

    Abstract:

    Improvements on the effect of fracturing stimulation is essential for the economic and effective development of tight reservoirs, and it is necessary to consider the distribution characteristics of complex fracture networks while evaluating the effect of fracturing stimulation. Based on microseismic data, distribution characteristics of secondary fractures were obtained by using a fractal random fracture networks generation algorithm. By considering the physical properties variation of the near borehole region of fractured horizontal wells, a mathematical model of fluid flow in multi-zone porous media of fractured horizontal wells was established and then resolved. Based on the model, the influences of the complexity of secondary fractures on the flow were studied. The results demonstrate that the complexity of secondary fractures has a significant impact on the entire flow stage. The findings include the larger the fractal dimension, the higher the yield; the wider the stimulated zone, the longer the steady-state turbulence early linear flow and the bilinear flow will last. The fracturing stimulated area with the distributed secondary fractures is the main area in the early to middle stage of production, and it makes the largest contribution to the production. Thus, during actual production, the best approach is to increase the stimulated volume so as to improve the early production and to maximize the EOR of reservoirs. The research results can provide a theoretical basis ofr the evaluation of a volume fracturing effect of tight reservoirs and the optimization of fracturing design.

  • 图  1   压裂水平井微地震裂缝间距数据

    Figure  1.   Micro-seismic fracture spacing data of fractured horizontal wells

    图  2   反演得到的H1多级压裂水平井次生裂缝网络形状

    Figure  2.   Inversion on the shape of the secondary fracture network of H1 staged fractured horizontal well

    图  3   不同分形维数下的次生裂缝数目变化特征

    Figure  3.   Multi-zone flow model of fractured horizontal well considering the distribution characteristics of secondary fractures

    图  4   考虑次生裂缝分布特征的压裂水平井多区流动模型

    Figure  4.   Multi-zone flow model of fractured horizontal well considering the distribution characteristics of secondary fractures

    图  5   H1井产量拟合结果

    Figure  5.   Production fitting results of Well H1

    图  6   不同分形维数时的压力及产量曲线

    Figure  6.   Pressure and production curves under different fractal dimensions

    图  7   不同裂缝半长时的井底压力响应曲线及产量曲线

    Figure  7.   Bottomhole pressure response and production curves under different fracture half-lengths

    图  8   不同缝网渗透率下的井底压力响应曲线及产量曲线

    Figure  8.   Bottomhole pressure response and production curves under different permeability of fracture pattern

    图  9   不同区域产量及采出程度对比

    Figure  9.   Comparison of production and recovery degree of different regions

    表  1   长庆油田某区块致密油藏相关数据

    Table  1   Relevant data on tight reservoirs in a block of Changqing Oilfield

    参数数值参数数值
    基质渗透率/mD0.13分形维数1.9
    基质孔隙度,%8.0分形指数0.1
    基质综合压缩系数/MPa–10.000 466主裂缝半间距/m11.58
    水力裂缝附近裂缝系统
    渗透率/mD
    1 000主裂缝导流能力/
    (mD·cm)
    292
    裂缝系统综合
    压缩系数/MPa–1
    0.000 466主裂缝半长/m106.68
    原油黏度/(mPa·s)0.8储层厚度/m15.44
    下载: 导出CSV
  • [1]

    KANG S M, FATHI E, AMBROSE R J, et al. Carbon dioxide storage capacity of organic-rich shales[J]. SPE Journal, 2011, 16(4): 842–855. doi: 10.2118/134583-PA

    [2]

    YAN Bicheng, WANG Yuhe, KILLOUGH J E. Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs[R]. SPE 163651, 2013.

    [3]

    WASAKI A, AKKUTLU I Y. Permeability of organic-rich shale[J]. SPE Journal, 2015, 20(6): 1384–1396. doi: 10.2118/170830-PA

    [4] 钱斌, 张俊成, 朱炬辉, 等. 四川盆地长宁地区页岩气水平井组" 拉链式”压裂实践[J]. 天然气工业, 2015, 35(1): 81–84. doi: 10.3787/j.issn.1000-0976.2015.01.010

    QIAN Bin, ZHANG Juncheng, ZHU Juhui, et al. Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 81–84. doi: 10.3787/j.issn.1000-0976.2015.01.010

    [5]

    LANGE T, SAUTER M, HEITFELD M, et al. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system[J]. Environmental Earth Sciences, 2013, 70(8): 3839–3853. doi: 10.1007/s12665-013-2803-3

    [6]

    SHENG Guanglong, JAVADPOUR F, SU Yuliang, et al. A semianalytic solution for temporal pressure and production rate in a shale reservoir with non-uniform distribution of induced fractures[J]. SPE Journal, 2019, 24(4): 1856–1883. doi: 10.2118/195576-PA

    [7]

    MAYERHOFER M J, LOLON E, WARPINSKI N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1): 89–98.

    [8] 王文东, 苏玉亮, 慕立俊, 等. 致密油藏直井体积压裂储层改造体积的影响因素[J]. 中国石油大学学报(自然科学版), 2013, 37(3): 93–97.

    WANG Wendong, SU Yuliang, MU Lijun, et al. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(3): 93–97.

    [9] 杜保健, 程林松, 曹仁义, 等. 致密油藏体积压裂水平井开发效果[J]. 大庆石油地质与开发, 2014, 33(1): 96–101. doi: 10.3969/J.ISSN.1000-3754.2014.01.018

    DU Baojian, CHENG Linsong, CAO Renyi, et al. Development effects of the volumetric fracturing horizontal well in tight oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(1): 96–101. doi: 10.3969/J.ISSN.1000-3754.2014.01.018

    [10]

    XU Peng, LI Cuihong, QIU Shuxia, et al. A fractal network model for fractured porous media[J]. Fractals, 2016, 24(2): 1650018. doi: 10.1142/S0218348X16500183

    [11]

    MEYER B R, BAZAN L W. A discrete fracture network model for hydraulically induced fractures-theory, parametric and case studies[R]. SPE 140514, 2011.

    [12]

    WENG Xiaowei, KRESSE O, COHEN C E, et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J]. SPE Production & Operations, 2011, 26(4): 368–380.

    [13]

    FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[R]. SPE 90051, 2004.

    [14] 赵博雄, 王忠仁, 刘瑞, 等. 国内外微地震监测技术综述[J]. 地球物理学进展, 2014, 29(4): 1882–1888. doi: 10.6038/pg20140454

    ZHAO Boxiong, WANG Zhongren, LIU Rui, et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882–1888. doi: 10.6038/pg20140454

    [15]

    CAI Jianchao, YU Boming. A discussion of the effect of tortuosity on the capillary imbibition in porous media[J]. Transport in Porous Media, 2011, 89(2): 251–263. doi: 10.1007/s11242-011-9767-0

    [16]

    SU Yuliang, SHENG Guanglong, WANG Wendong, et al. A mixed-fractal flow model for stimulated fractured vertical wells in tight oil reservoirs[J]. Fractals, 2016, 24(1): 1650006. doi: 10.1142/S0218348X16500067

    [17]

    ZHOU Zhiwei, SU Yuliang, WANG Wendong, et al. Integration of microseismic and well production data for fracture network calibration with an L-system and rate transient analysis[J]. Journal of Unconventional Oil and Gas Resources, 2016, 15: 113–121. doi: 10.1016/j.juogr.2016.07.001

    [18]

    ZHOU Zhiwei, SU Yuliang, WANG Wendong, et al. Application of the fractal geometry theory on fracture network simulation[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(2): 487–496. doi: 10.1007/s13202-016-0268-0

    [19]

    SHENG Guanglong, SU Yuliang, WANG Wendong, et al. Application of fractal geometry in evaluation of effective stimulated reservoir volume in shale gas reservoirs[J]. Fractals, 2017, 25(4): 1740007. doi: 10.1142/S0218348X17400072

    [20]

    CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J. Hydraulic fracture complexity: diagnosis, remediation, and explotation[R]. SPE 115771, 2008.

    [21]

    BROWN M, OZKAN E, RAGHAVAN R, et al. Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(6): 663–676.

    [22]

    STALGOROVA E, MATTAR L. Analytical model for history matching and forecasting production in multifrac composite systems[R]. SPE 162516, 2012.

    [23]

    SHENG Guanglong, SU Yuliang, WANG Wendong, et al. A multiple porosity media model for multi-fractured horizontal wells in shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1562–1573. doi: 10.1016/j.jngse.2015.10.026

    [24] 苏玉亮, 盛广龙, 王文东, 等. 页岩气藏多重介质耦合流动模型[J]. 天然气工业, 2016, 36(2): 52–59. doi: 10.3787/j.issn.1000-0976.2016.02.007

    SU Yuliang, SHENG Guanglong, WANG Wendong, et al. A multi-media coupling flow model for shale gas reservoirs[J]. Natural Gas Industry, 2016, 36(2): 52–59. doi: 10.3787/j.issn.1000-0976.2016.02.007

    [25]

    SHENG Guanglong, SU Yuliang, WANG Wendong. A new fractal approach for describing induced-fracture porosity/permeability/compressibility in stimulated unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 79: 855–866.

  • 期刊类型引用(10)

    1. 章威,王美楠,阳晓燕,张吉磊,胡俊瑜. 渤海复杂底水油藏开发调整策略制定及应用. 石油化工应用. 2023(10): 20-25 . 百度学术
    2. 孙恩慧,郭敬民,赵秀娟,张东. 底水油藏高含水期水平井转注后对采收率影响研究. 承德石油高等专科学校学报. 2022(01): 24-26+31 . 百度学术
    3. 于萌,徐国瑞,李翔,张东,盛磊,刘文辉. 海上油田低温酚醛凝胶的改进及应用. 化工科技. 2022(06): 68-72 . 百度学术
    4. 胡松,王敏,田飞,赵磊. 基于水平井电阻率测井的井间夹层反演方法及应用. 石油钻探技术. 2021(03): 151-158 . 本站查看
    5. 于萌,铁磊磊,李翔,刘文辉. 海上油田剖面调整用分散共聚物颗粒体系的研制. 石油钻探技术. 2020(02): 118-122 . 本站查看
    6. 章威,龙明,周焱斌,张吉磊,欧阳雨薇. 无夹层底水油藏注水开发图版建立与应用. 特种油气藏. 2020(02): 115-119 . 百度学术
    7. 王倩,高祥录,罗池辉,孟祥兵,甘衫衫,刘佳. 超稠油Ⅲ类油藏夹层发育模式及SAGD提高采收率技术. 特种油气藏. 2020(04): 105-112 . 百度学术
    8. 王有慧,鲍君刚,王呈呈,高益桁. 高含水砂岩老油田剩余油综合分析及开发实践. 石油化工高等学校学报. 2020(05): 86-91 . 百度学术
    9. 张吉磊,罗宪波,张运来,何逸凡,周焱斌. 提高稠油底水油藏转注井注水效率研究. 岩性油气藏. 2019(04): 141-148 . 百度学术
    10. 王超,杨宏楠,乐平,贾冰懿,苏波. 隔夹层成因及其对剩余油分布的影响——以哈得油田东河砂岩油藏为例. 新疆石油天然气. 2019(04): 15-20+1-2 . 百度学术

    其他类型引用(3)

图(9)  /  表(1)
计量
  • 文章访问数:  1954
  • HTML全文浏览量:  683
  • PDF下载量:  104
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-10-16
  • 网络出版日期:  2019-11-07
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回