Slim Liner Cementing Technology for Ultra-Deep Wells with a Narrow Annulus in No.1 District of Shunbei Block
-
摘要:
顺北一区超深井窄间隙小尾管固井面临水泥环薄弱、注替泵压高、顶替效率低、井下温度高和高压盐水层发育等一系列技术难题,固井质量难以保证。为解决该问题,在总结前期固井施工经验的基础上,完善了井眼准备技术,优化了抗高温防气窜弹韧性水泥浆体系,开展了水泥石密封完整性研究,进行了固井流变学设计及压稳防气窜工艺优化,形成了顺北一区超深井窄间隙小尾管固井技术。该固井技术在现场应用3井次,固井质量良好,后期施工未发生水侵,保证了窄间隙段的长效密封性。顺北一区超深井窄间隙小尾管固井技术,不但解决了该区块的固井难题,还保障了该区块的安全、高效开发。
Abstract:Slim liner cementing in ultra-deep wells with narrow annulus in the No.1 District of the Shunbei Block faces a series of technical challenges such as weak cement sheath, high displacement pumping pressure, low displacement efficiency, high bottomhole temperature and the development of high-pressure brine layer, which compromises the cementing quality. In order to solve those problems, on the basis of summarizing the previous operation experiences, small liner cementing technology for ultra-deep wells with narrow annulus in the No. 1 District of the Shunbei Block was formed by improving wellbore preparation technologies, optimizing the high temperature/gas channeling-proof elastic toughness cement slurry system, conducting cement stone sealing integrity research and carrying out cementing rheology design and stable-killing gas channeling-proof optimization. It has been applied in 3 wells in this area with good cementing quality. The subsequent operations were free from water intrusion, ensuring the long-term sealing of section with a narrow annulus. This cementing technology can not only effectively solve the cementing problems of this block, but also effectively ensure the safe and efficient development of the block.
-
-
表 1 顺北1–14井小尾管固井浆柱结构设计结果
Table 1 Structural design results of cement slurry column in Wells 1–14 cemented with slim liner in Shunbei Block
序号 液体 液体密度/(kg·L–1) 用量/m3 长度/m 分段压力/MPa 累计压力/MPa 1 钻井液 1.65 5 467.00 88.49 88.49 2 隔离液 1.75 16.00 750.00 12.88 101.37 3 水泥浆(领浆) 1.88 12.31 783.00 14.44 115.81 4 水泥浆(尾浆) 1.90 7.74 580.00 10.81 126.62 表 2 顺北一区5口井三开所用钻井液密度及出水情况
Table 2 Drilling fluid density and water production in the third spud of 5 wells in No.1 District of Shunbei Block
井号 井身结构 三开钻井液
密度/(kg·L–1)出水情况 顺北1–4H 原四级 1.76 钻至井深7 253.32 m,出口密度由1.76 kg/L降至1.00 kg/L,地层出水排放污染钻井液9.947 m3,未发现液面上升 顺北1–5H 原四级 1.68 钻至井深7 401.00 m,液面无变化,出口密度由1.66 kg/L降至1.62 kg/L,地层出水排放污染钻井液26 m3 顺北1–11 新四级 1.62 钻至井深7 209.55 m,迟到井深7 205.40 m,出口密度由1.60 kg/L降至1.55 kg/L,液面无变化,判断地层出水 顺北1–13 新四级 1.63 中完通井下钻划眼到底循环,出口密度由1.63 kg/L降至1.20 kg/L,判断井下出盐水,液面无明显上升,循环排污15 m3 顺北1–14 新四级 1.65 中完通井到底,循环期间循环出的盐水及混浆总计49.79 m3,液面无明显上升 表 3 水泥浆性能要求
Table 3 The performance of the cement slurry
水泥浆 密度/(kg·L–1) 滤失量(6.9 MPa×30 min)/mL 析水量/mL 24 h抗压强度/MPa 100 Bc稠化时间/min 流动度 六速黏度计读数 领浆 1.88 40 0 23.8 369 22 245/151/110/64/7/5 尾浆 1.91 36 0 24.1 180 21 298/216/175/138/10/6 -
[1] 赵志国, 白彬珍, 何世明, 等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 9–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 9–13.
[2] 刘彪, 潘丽娟, 张俊, 等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术, 2016, 44(6): 12–15. LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 12–15.
[3] 董小虎, 商森. 顺北区块超深120 mm小井眼定向技术难点及对策[J]. 西部探矿工程, 2018, 30(1): 47–50. doi: 10.3969/j.issn.1004-5716.2018.01.017 DONG Xiaohu, SHANG Sen. Difficulties and countermeasures of ultra-deep 120 mm slim hole orientation technical in Shunbei Block[J]. West-China Exploration Engineering, 2018, 30(1): 47–50. doi: 10.3969/j.issn.1004-5716.2018.01.017
[4] 李壮, 牛朝伟, 高玮, 等. 热采侧钻井塑性水泥浆研究与应用[J]. 钻井液与完井液, 2009, 26(4): 40–42. doi: 10.3969/j.issn.1001-5620.2009.04.013 LI Zhuang, NIU Chaowei, GAO Wei, et al. The study and application of plastic cement slurry for thermal production sidetracked wells[J]. Drilling Fluid & Completion Fluid, 2009, 26(4): 40–42. doi: 10.3969/j.issn.1001-5620.2009.04.013
[5] 罗长斌, 李治, 胡富源, 等. 韧性水泥浆在长庆储气库固井中的研究与应用[J]. 西部探矿工程, 2016, 28(1): 72–76. doi: 10.3969/j.issn.1004-5716.2016.01.022 LUO Changbin, LI Zhi, HU Fuyuan, et al. Research and application of toughness cement slurry in cementing of Changqing gas storage[J]. West-China Exploration Engineering, 2016, 28(1): 72–76. doi: 10.3969/j.issn.1004-5716.2016.01.022
[6] 彭志刚, 陈大钧, 冯茜. 深井塑性水泥浆体系研究[J]. 钻井液与完井液, 2003, 20(4): 4–6. doi: 10.3969/j.issn.1001-5620.2003.04.002 PENG Zhigang, CHEN Dajun, FENG Qian, et al. The research of plastic cement slurry system in deep wells[J]. Drilling Fluid & Completion Fluid, 2003, 20(4): 4–6. doi: 10.3969/j.issn.1001-5620.2003.04.002
[7] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001: 316-339. LIU Chongjian, HUANG Bozong, XU Tongtai, et al. Theory and application of cementing in oil and gas wells[M]. Beijing: Petroleum Industry Press, 2001: 316-339.
[8] 宋会光, 李跃明, 李良兵, 等. 对水泥浆失重规律的认识[J]. 西部探矿工程, 2008, 20(12): 114–117. doi: 10.3969/j.issn.1004-5716.2008.12.039 SONG Huiguang, LI Yueming, LI Liangbing, et al. The opinion of cement slurry weightlessness law[J]. West-China Exploration Engineering, 2008, 20(12): 114–117. doi: 10.3969/j.issn.1004-5716.2008.12.039
[9] 秦国宏, 覃毅, 尤凤堂, 等. 水泥浆失重对高压油气井固井质量的影响分析及工艺对策[J]. 探矿工程(岩土钻掘工程), 2015, 42(3): 33–36. QIN Guohong, QIN Yi, YOU Fengtang, et al. Analysis on the impact of weight loss of cement slurry on cementing quality for high-pressure oil and gas well and the technical countermeasures[J]. Prospecting Engineering(Rock & Soil Drilling and Tunneling), 2015, 42(3): 33–36.
[10] 杨建雄, 杨宝国, 胡小兰. 高温高压固井防气窜技术[J]. 江汉石油职工大学学报, 2009, 22(2): 34–36. doi: 10.3969/j.issn.1009-301X.2009.02.009 YANG Jianxiong, YANG Baoguo, HU Xiaolan. High temperature and high pressure anti-gas channeling cementing technogy[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2009, 22(2): 34–36. doi: 10.3969/j.issn.1009-301X.2009.02.009
[11] 高元, 桑来玉, 杨广国, 等. 胶乳纳米液硅高温防气窜水泥浆体系[J]. 钻井液与完井液, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014 GAO Yuan, SANG Laiyu, YANG Guangguo, et al. Cement slurry treated with latex nano liquid silica anti-gas-migration agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014
-
期刊类型引用(2)
1. 鲜若琨,付美龙,张瑶,敖明明,陈立峰. 高温水平井环空化学封隔材料配方体系. 断块油气田. 2020(05): 671-675 . 百度学术
2. 孟祥海,朱立国,张云宝,高建崇,代磊阳,高立宁,邹明华. 筛管完井水平井梯度智能控堵水试验研究. 天然气与石油. 2019(04): 62-66 . 百度学术
其他类型引用(0)