顺北一区超深井窄间隙小尾管固井技术研究

邹书强, 张红卫, 伊尔齐木, 李翔

邹书强, 张红卫, 伊尔齐木, 李翔. 顺北一区超深井窄间隙小尾管固井技术研究[J]. 石油钻探技术, 2019, 47(6): 60-66. DOI: 10.11911/syztjs.2019114
引用本文: 邹书强, 张红卫, 伊尔齐木, 李翔. 顺北一区超深井窄间隙小尾管固井技术研究[J]. 石油钻探技术, 2019, 47(6): 60-66. DOI: 10.11911/syztjs.2019114
ZOU Shuqiang, ZHANG Hongwei, Eerqm, LI Xiang. Slim Liner Cementing Technology for Ultra-Deep Wells with a Narrow Annulus in No.1 District of Shunbei Block[J]. Petroleum Drilling Techniques, 2019, 47(6): 60-66. DOI: 10.11911/syztjs.2019114
Citation: ZOU Shuqiang, ZHANG Hongwei, Eerqm, LI Xiang. Slim Liner Cementing Technology for Ultra-Deep Wells with a Narrow Annulus in No.1 District of Shunbei Block[J]. Petroleum Drilling Techniques, 2019, 47(6): 60-66. DOI: 10.11911/syztjs.2019114

顺北一区超深井窄间隙小尾管固井技术研究

基金项目: 国家重点基础研究发展计划(“973”计划)项目“深井复杂地层安全高效钻井基础研究”(编号:2010CB226700)、国家自然科学基金项目“控压钻井测控理论及关键问题研究”(编号:51334003)联合资助
详细信息
    作者简介:

    邹书强(1988—),男,贵州印江人,2009年毕业于中国地质大学(武汉)石油工程专业,工程师,主要从事固井技术研究工作。E-mail:zhoushuq.xbsj@sinopec.com

  • 中图分类号: TE256+.4

Slim Liner Cementing Technology for Ultra-Deep Wells with a Narrow Annulus in No.1 District of Shunbei Block

  • 摘要:

    顺北一区超深井窄间隙小尾管固井面临水泥环薄弱、注替泵压高、顶替效率低、井下温度高和高压盐水层发育等一系列技术难题,固井质量难以保证。为解决该问题,在总结前期固井施工经验的基础上,完善了井眼准备技术,优化了抗高温防气窜弹韧性水泥浆体系,开展了水泥石密封完整性研究,进行了固井流变学设计及压稳防气窜工艺优化,形成了顺北一区超深井窄间隙小尾管固井技术。该固井技术在现场应用3井次,固井质量良好,后期施工未发生水侵,保证了窄间隙段的长效密封性。顺北一区超深井窄间隙小尾管固井技术,不但解决了该区块的固井难题,还保障了该区块的安全、高效开发。

    Abstract:

    Slim liner cementing in ultra-deep wells with narrow annulus in the No.1 District of the Shunbei Block faces a series of technical challenges such as weak cement sheath, high displacement pumping pressure, low displacement efficiency, high bottomhole temperature and the development of high-pressure brine layer, which compromises the cementing quality. In order to solve those problems, on the basis of summarizing the previous operation experiences, small liner cementing technology for ultra-deep wells with narrow annulus in the No. 1 District of the Shunbei Block was formed by improving wellbore preparation technologies, optimizing the high temperature/gas channeling-proof elastic toughness cement slurry system, conducting cement stone sealing integrity research and carrying out cementing rheology design and stable-killing gas channeling-proof optimization. It has been applied in 3 wells in this area with good cementing quality. The subsequent operations were free from water intrusion, ensuring the long-term sealing of section with a narrow annulus. This cementing technology can not only effectively solve the cementing problems of this block, but also effectively ensure the safe and efficient development of the block.

  • 图  1   顺北一区典型的新四级井身结构示意

    Figure  1.   Schematic of typical new four-level casing program in No. 1 District of Shunbei Block

    图  2   水泥石抗压强度、弹性模量与弹性材料加量的关系

    Figure  2.   Relationship between the compressive strength, elastic modulus and the elastic material dosage of cement stone

    图  3   有机纤维加量与水泥石抗折强度的关系

    Figure  3.   Relationship between the organic fiber dosage and bending strength of cement stone

    图  4   水泥环密封完整性评价装置示意

    Figure  4.   Schematic of the evaluation device of cement sheath seal integrity

    图  5   常规抗高温水泥浆水泥环密封试验结果

    Figure  5.   Test results of the sealing performance of cement sheath formed by conventional high temperature resistant cement slurry

    图  6   抗高温防气窜弹韧性水泥浆水泥环密封试验结果

    Figure  6.   Test results of the sealing performance of cement sheath formed by high temperature/gas channeling-proof elastic toughness cement slurry

    图  7   应用抗高温防气窜弹韧性水泥浆的3口井的声幅测井曲线

    Figure  7.   Acoustic logging curve of 3 wells adopting high temperature/gas channeling-proof elastic toughness cement slurry system

    表  1   顺北1–14井小尾管固井浆柱结构设计结果

    Table  1   Structural design results of cement slurry column in Wells 1–14 cemented with slim liner in Shunbei Block

    序号液体液体密度/(kg·L–1用量/m3长度/m分段压力/MPa累计压力/MPa
    1钻井液1.655 467.00 88.49 88.49
    2隔离液1.7516.00750.0012.88101.37
    3水泥浆(领浆)1.8812.31783.0014.44115.81
    4水泥浆(尾浆)1.90 7.74580.0010.81126.62
    下载: 导出CSV

    表  2   顺北一区5口井三开所用钻井液密度及出水情况

    Table  2   Drilling fluid density and water production in the third spud of 5 wells in No.1 District of Shunbei Block

    井号井身结构三开钻井液
    密度/(kg·L–1
    出水情况
    顺北1–4H原四级1.76 钻至井深7 253.32 m,出口密度由1.76 kg/L降至1.00 kg/L,地层出水排放污染钻井液9.947 m3,未发现液面上升
    顺北1–5H原四级1.68 钻至井深7 401.00 m,液面无变化,出口密度由1.66 kg/L降至1.62 kg/L,地层出水排放污染钻井液26 m3
    顺北1–11新四级1.62 钻至井深7 209.55 m,迟到井深7 205.40 m,出口密度由1.60 kg/L降至1.55 kg/L,液面无变化,判断地层出水
    顺北1–13新四级1.63 中完通井下钻划眼到底循环,出口密度由1.63 kg/L降至1.20 kg/L,判断井下出盐水,液面无明显上升,循环排污15 m3
    顺北1–14新四级1.65 中完通井到底,循环期间循环出的盐水及混浆总计49.79 m3,液面无明显上升
    下载: 导出CSV

    表  3   水泥浆性能要求

    Table  3   The performance of the cement slurry

    水泥浆密度/(kg·L–1滤失量(6.9 MPa×30 min)/mL析水量/mL24 h抗压强度/MPa100 Bc稠化时间/min流动度六速黏度计读数
    领浆1.8840023.836922245/151/110/64/7/5
    尾浆1.9136024.118021298/216/175/138/10/6
    下载: 导出CSV
  • [1] 赵志国, 白彬珍, 何世明, 等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 9–13.

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 9–13.

    [2] 刘彪, 潘丽娟, 张俊, 等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术, 2016, 44(6): 12–15.

    LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 12–15.

    [3] 董小虎, 商森. 顺北区块超深120 mm小井眼定向技术难点及对策[J]. 西部探矿工程, 2018, 30(1): 47–50. doi: 10.3969/j.issn.1004-5716.2018.01.017

    DONG Xiaohu, SHANG Sen. Difficulties and countermeasures of ultra-deep 120 mm slim hole orientation technical in Shunbei Block[J]. West-China Exploration Engineering, 2018, 30(1): 47–50. doi: 10.3969/j.issn.1004-5716.2018.01.017

    [4] 李壮, 牛朝伟, 高玮, 等. 热采侧钻井塑性水泥浆研究与应用[J]. 钻井液与完井液, 2009, 26(4): 40–42. doi: 10.3969/j.issn.1001-5620.2009.04.013

    LI Zhuang, NIU Chaowei, GAO Wei, et al. The study and application of plastic cement slurry for thermal production sidetracked wells[J]. Drilling Fluid & Completion Fluid, 2009, 26(4): 40–42. doi: 10.3969/j.issn.1001-5620.2009.04.013

    [5] 罗长斌, 李治, 胡富源, 等. 韧性水泥浆在长庆储气库固井中的研究与应用[J]. 西部探矿工程, 2016, 28(1): 72–76. doi: 10.3969/j.issn.1004-5716.2016.01.022

    LUO Changbin, LI Zhi, HU Fuyuan, et al. Research and application of toughness cement slurry in cementing of Changqing gas storage[J]. West-China Exploration Engineering, 2016, 28(1): 72–76. doi: 10.3969/j.issn.1004-5716.2016.01.022

    [6] 彭志刚, 陈大钧, 冯茜. 深井塑性水泥浆体系研究[J]. 钻井液与完井液, 2003, 20(4): 4–6. doi: 10.3969/j.issn.1001-5620.2003.04.002

    PENG Zhigang, CHEN Dajun, FENG Qian, et al. The research of plastic cement slurry system in deep wells[J]. Drilling Fluid & Completion Fluid, 2003, 20(4): 4–6. doi: 10.3969/j.issn.1001-5620.2003.04.002

    [7] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001: 316-339.

    LIU Chongjian, HUANG Bozong, XU Tongtai, et al. Theory and application of cementing in oil and gas wells[M]. Beijing: Petroleum Industry Press, 2001: 316-339.

    [8] 宋会光, 李跃明, 李良兵, 等. 对水泥浆失重规律的认识[J]. 西部探矿工程, 2008, 20(12): 114–117. doi: 10.3969/j.issn.1004-5716.2008.12.039

    SONG Huiguang, LI Yueming, LI Liangbing, et al. The opinion of cement slurry weightlessness law[J]. West-China Exploration Engineering, 2008, 20(12): 114–117. doi: 10.3969/j.issn.1004-5716.2008.12.039

    [9] 秦国宏, 覃毅, 尤凤堂, 等. 水泥浆失重对高压油气井固井质量的影响分析及工艺对策[J]. 探矿工程(岩土钻掘工程), 2015, 42(3): 33–36.

    QIN Guohong, QIN Yi, YOU Fengtang, et al. Analysis on the impact of weight loss of cement slurry on cementing quality for high-pressure oil and gas well and the technical countermeasures[J]. Prospecting Engineering(Rock & Soil Drilling and Tunneling), 2015, 42(3): 33–36.

    [10] 杨建雄, 杨宝国, 胡小兰. 高温高压固井防气窜技术[J]. 江汉石油职工大学学报, 2009, 22(2): 34–36. doi: 10.3969/j.issn.1009-301X.2009.02.009

    YANG Jianxiong, YANG Baoguo, HU Xiaolan. High temperature and high pressure anti-gas channeling cementing technogy[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2009, 22(2): 34–36. doi: 10.3969/j.issn.1009-301X.2009.02.009

    [11] 高元, 桑来玉, 杨广国, 等. 胶乳纳米液硅高温防气窜水泥浆体系[J]. 钻井液与完井液, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014

    GAO Yuan, SANG Laiyu, YANG Guangguo, et al. Cement slurry treated with latex nano liquid silica anti-gas-migration agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 67–72. doi: 10.3969/j.issn.1001-5620.2016.03.014

  • 期刊类型引用(2)

    1. 鲜若琨,付美龙,张瑶,敖明明,陈立峰. 高温水平井环空化学封隔材料配方体系. 断块油气田. 2020(05): 671-675 . 百度学术
    2. 孟祥海,朱立国,张云宝,高建崇,代磊阳,高立宁,邹明华. 筛管完井水平井梯度智能控堵水试验研究. 天然气与石油. 2019(04): 62-66 . 百度学术

    其他类型引用(0)

图(7)  /  表(3)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  474
  • PDF下载量:  92
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-01-14
  • 修回日期:  2019-10-15
  • 网络出版日期:  2019-11-04
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回