南海西江油田古近系泥页岩地层防塌钻井液技术

张伟国, 狄明利, 卢运虎, 张健, 杜宣

张伟国, 狄明利, 卢运虎, 张健, 杜宣. 南海西江油田古近系泥页岩地层防塌钻井液技术[J]. 石油钻探技术, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
引用本文: 张伟国, 狄明利, 卢运虎, 张健, 杜宣. 南海西江油田古近系泥页岩地层防塌钻井液技术[J]. 石油钻探技术, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103
Citation: ZHANG Weiguo, DI Mingli, LU Yunhu, ZHANG Jian, DU Xuan. Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 40-47. DOI: 10.11911/syztjs.2019103

南海西江油田古近系泥页岩地层防塌钻井液技术

基金项目: 国家自然科学基金面上项目“高温高应力盐膏层弯曲井筒围岩失稳机理与控制理论研究”(编号:51774305)、石油化工联合基金(A类)重点支持项目“超深井井筒安全构建工程基础理论与方法”(编号:U1762215)资助
详细信息
    作者简介:

    张伟国(1979—),男,山东烟台人,2002年毕业于石油大学(华东)石油工程专业,高级工程师,主要从事海上钻井完井技术研究及相关管理工作。E-mail:zhangwg@cnooc.com.cn

    通讯作者:

    卢运虎,luyunhu20021768@163.com

  • 中图分类号: TE254+.3

Anti-Sloughing Drilling Fluid Technology for the Paleogene Shale Stratum of the Xijiang Oilfield in the South China Sea

  • 摘要:

    为了解决南海西江油田古近系泥页岩地层钻井过程中出现的井下掉块和阻卡等问题,进行了防塌钻井液技术研究。通过地层矿物组分、理化特性和力学参数分析,明确了古近系泥页岩地层井眼失稳机理;建立了维持井壁稳定的钻井液密度与岩石黏聚力关系图版,确定了保持井壁稳定的最低岩石黏聚力;为提高泥页岩经钻井液浸泡后的强度,优选了抑制剂和封堵剂并确定了其加量,得到了新防塌钻井液配方。研究发现,钻井液滤液进入地层引起泥页岩强度降低,是该油田古近系泥页岩地层井眼失稳的主要原因;在KCl–聚合物钻井液中加入2.0%聚铵盐、0.5%纳米二氧化硅和3.0%碳酸钙配成的新防塌钻井液,泥页岩岩样在其中浸泡10 d后黏聚力可达8.8 MPa,满足预计工期内岩石内聚力大于8.7 MPa的要求。研究认为,新防塌钻井液具有较好的抑制性、封堵性和良好的防塌效果,能有效减小井径扩大率,从而解决南海西江油田古近系泥页岩地层钻井中出现的井眼失稳问题。

    Abstract:

    In order to address the problems of borehole caving, blockage and sticking while drilling the Paleogene shale formation in the Xijiang Oilfield of the South China Sea, technical research has been carried out on anti-sloughing drilling fluids. Through analyses of stratigraphic mineral composition, physicochemical properties and mechanical parameters, the mechanisms of wellbore instability in the Paleogene shale formation have been clarified, and have established the relationship chart between the drilling fluid density required for maintaining wellbore stability and rock cohesion, so as to determine the minimum rock cohesion index required to sustain wellbore stability. In order to improve the strength of surrounding shale immersed in drilling fluid, a new anti-sloughing drilling fluid formula was obtained through selection of proper inhibitor and plugging agent as well as their optimal dosages. The research showed that the intrusion of drilling fluid filtrate would lead to the reduction of shale strength, which is the main reason for the wellbore instability of Paleogene shale formation in this oilfield; After immersing for 10 days in the new anti-sloughing drilling fluid added by 2.0% polyammonium salt, 0.5% nano-silica and 3.0% calcium carbonate into KCl-polymer drilling fluid, the rock sample still has the cohesive force of 8.8 MPa, which satisfies the required rock cohesion of greater than 8.7 MPa in the expected period. According to the comprehensive analysis, the new anti-sloughing drilling fluid featured by good inhibition, plugging and anti-sloughing effect, it can solve the problems encountered during Paleogene shale drilling in the Xijiang Oilfield of the South China Sea, and effectively control the borehole enlargement rate.

  • 图  1   南海西江油田古近系泥页岩岩样扫描电镜图

    Figure  1.   Scanning electron micrograph of rock sample of Paleogene shale in the Xijiang Oilfield of the South China Sea

    图  2   线性膨胀率与滚动回收率试验结果

    Figure  2.   The test results of linear expansion and rolling recovery

    图  3   坍塌压力当量密度与岩石黏聚力关系图版

    Figure  3.   Relationship between collapse pressure equivalent density and rock cohesion

    图  4   岩样在钻井液中浸泡后抗压强度与黏聚力的变化

    Figure  4.   The change of compressive strength and cohesion of rock samples after immersion in drilling fluid

    图  5   不同聚铵盐加量下钻井液的滤失量和表观黏度

    Figure  5.   Filtration and apparent viscosity of drilling fluid under different polyammonium dosages

    图  6   钻井液粒度分布测试结果

    Figure  6.   Test results of drilling fluid particle size distribution

    图  7   钻井液滤失性能与复配超细碳酸钙加量的关系曲线

    Figure  7.   Relationship between filtration performance of drilling fluid and addition of composite superfine CaCO3

    图  8   钻井液滤失性能与纳米二氧化硅加量的关系曲线

    Figure  8.   Relationship between the filtration performance of drilling fluid and the addition of nano SiO2

    图  9   线性膨胀率试验结果

    Figure  9.   Results of a linear expansion rate test

    图  10   滚动回收率试验结果

    Figure  10.   Results of a rolling recovery test

    图  11   岩石黏聚力与内摩擦角试验结果

    Figure  11.   Experimental results of rock cohesion and internal friction angle

    图  12   承压能力试验结果

    Figure  12.   Results of pressure-bearing capacity test

    图  13   新防塌钻井液和现用钻井液条件下的井径扩大率

    Figure  13.   Comparison of the hole enlargement rates between new anti-sloughing drilling fluid and KCl-polymer drilling fluid

    表  1   南海西江油田古近系泥页岩矿物种类与含量

    Table  1   Mineral types and contents of Paleogene shale in the Xijiang Oilfield of the South China Sea

    样品编号矿物含量,%黏土成分含量,%
    石英钾长石斜长石方解石白云石黏土伊利石高岭石绿泥石伊/蒙混层
    146.93.95.13.33.437.4251914 42
    247.84.44.23.83.935.91717462
    351.812.9 4.56.92.921.01517563
    443.55.84.76.63.236.21118370
    548.77.35.84.83.130.323 910 58
    646.05.63.06.57.231.71915660
    下载: 导出CSV

    表  2   新防塌钻井液与KCl–聚合物钻井液常规性能对比情况

    Table  2   Comparison of the conventional performances between new anti-sloughing drilling fluid and KCl-polymer drilling fluid

    钻井液密度/(kg·L–1表观黏度/(mPa·s)塑性黏度/(mPa·s)动切力/PaAPI滤失量/mL高温高压滤失量/mL老化情况
    KCl–聚合物钻井液1.1614.2510.43.98.0老化前
    1.1626.2518.77.73.919.0 老化后
    1.2517.5012.04.38.0老化前
    1.2530.9022.38.84.318.5老化后
    新防塌钻井液1.1626.5018.58.03.6老化前
    1.1654.5039.015.8 3.012.5老化后
    1.2530.5021.09.73.4老化前
    1.2558.0041.017.4 2.811.5老化后
     注:高温高压滤失量测试条件为温度130 ℃、压差3.5 MPa;老化条件为130 ℃下滚动16 h。
    下载: 导出CSV
  • [1] 傅成玉, 罗汉.当代中国海洋石油工业[M].北京: 当代中国出版社, 2008: 5–30.

    FU Chengyu, LUO Han. Marine oil industry in contemporary China[M]. Beijing: Contemporary China Publishing House, 2008: 5–30.

    [2] 李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气(地质), 1993, 7(6): 11–17.

    LI Pinglu. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 1993, 7(6): 11–17.

    [3] 茹克. 南海北部边缘叠合式盆地的发育及其大地构造意义[J]. 石油与天然气地质, 1988, 9(1): 22–31. doi: 10.11743/ogg19880103

    RU Ke. The development of superimposed basin on the northern margin of the South China Sea and its tectonic significance[J]. Oil & Gas Geology, 1988, 9(1): 22–31. doi: 10.11743/ogg19880103

    [4] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3): 15–21, 25.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15–21, 25.

    [5] 卢运虎, 金衍, 陈勉, 等. 高温高压耦合下含不同倾角充填缝砂岩的强度实验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2668–2679.

    LU Yunhu, JIN Yan, CHEN Mian, et al. Experimental study on strength of sandstone with different crack angle and different filling method under high-temperature and high-pressure coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 2668–2679.

    [6] 张健, 卢运虎. 超深井筒温度分布及其对围岩力学性质的影响研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2831–2839.

    ZHANG Jian, LU Yunhu. Study on temperature distribution of ultra-deep wellbore and its effect on mechanical properties of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 2831–2839.

    [7]

    CHENEVERT M E. Shale alteration by water adsorption[J]. Journal of Petroleum Technology, 1970, 22(9): 1141–1148. doi: 10.2118/2401-PA

    [8]

    BRADLEY W B. Failure of inclined boreholes[J]. Journal of Energy Resources Technology, 1979, 101(4): 232–239. doi: 10.1115/1.3446925

    [9]

    CROOK A J L, YU J G, WILLSON S M. Development of an orthotropic 3D elastoplastic material model for shale[R]. SPE 78238, 2002.

    [10]

    LU Y H, CHEN M, JIN Y, et al. A mechanical model of borehole stability for weak plane formation under porous flow[J]. Petroleum Science and Technology, 2012, 30(15): 1629–1638. doi: 10.1080/10916466.2010.514583

    [11] 石秉忠,解超,李胜,等. 杭锦旗区块锦58井区钻井液技术实践与认识[J]. 石油钻探技术, 2017, 45(6): 37–41. doi: 10.11911/syztjs.201706007

    SHI Bingzhong, XIE Chao, LI Sheng, et al. Development and application of drilling fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37–41. doi: 10.11911/syztjs.201706007

    [12] 陈明, 黄志远, 马庆涛, 等. 马深1井钻井工程设计与施工[J]. 石油钻探技术, 2017, 45(4): 15–20. doi: 10.11911/syztjs.201704003

    CHEN Ming, HUANG Zhiyuan, MA Qingtao, et al. Design and drilling of Well Mashen 1[J]. Petroleum Drilling Techniques, 2017, 45(4): 15–20. doi: 10.11911/syztjs.201704003

    [13] 邱梦觉. 海洋防塌钻井液体系适用性分析与应用比较[J]. 工程技术, 2016(6): 158. doi: 10.3969/j.issn.1671-3818.2016.06.137

    QIU Mengjue. Applicability analysis and application comparison of marine anti sloughing drilling fluid system[J]. Engineering Technology, 2016(6): 158. doi: 10.3969/j.issn.1671-3818.2016.06.137

    [14] 卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    [15] 刘向君,罗平亚. 泥岩地层井壁稳定性研究[J]. 天然气工业, 1997, 17(1): 45–48.

    LIU Xiangjun, LUO Pingya. Study on wellbore stability in mudstone formation[J]. Natural Gas Industry, 1997, 17(1): 45–48.

    [16] 马成云,宋碧涛,徐同台,等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液, 2017, 34(1): 1–8. doi: 10.3969/j.issn.1001-5620.2017.01.001

    MA Chengyun, SONG Bitao, XU Tongtai, et al. Progresses in studying drilling fluid nano material plugging agents[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 1–8. doi: 10.3969/j.issn.1001-5620.2017.01.001

    [17] 孔勇,金军斌,林永学,等. 封堵防塌钻井液处理剂研究进展[J]. 油田化学, 2017, 34(3): 556–560.

    KONG Yong, JIN Junbin, LIN Yongxue, et al. Research advances of plugging anti-sloughing drilling fluid additives[J]. Oilfield Chemistry, 2017, 34(3): 556–560.

    [18] 张建斌,贾俊,刘兆利. 长庆气田碳质泥岩防塌钻井液技术[J]. 钻井液与完井液, 2018, 35(3): 38–73.

    ZHANG Jianbin, JIA Jun, LIU Zhaoli. Drilling fluid technology for preventing collapse of carbargilite formation in Changqing gas field[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 38–73.

    [19] 邱正松, 张世锋, 黄维安, 等. 新型铝基防塌剂的研制及防塌作用机理[J]. 石油学报, 2014, 35(4): 754–758. doi: 10.7623/syxb201404018

    QIU Zhengsong, ZHANG Shifeng, HUANG Weian, et al. A novel aluminum-based shale/mudstone stabilizer and analysis of its mechanism for wellbore stability[J]. Acta Petrolei Sinica, 2014, 35(4): 754–758. doi: 10.7623/syxb201404018

    [20] 张金龙. 胜利海区深部地层防塌钻井液技术[J]. 钻井液与完井液, 2013, 30(5): 40–42. doi: 10.3969/j.issn.1001-5620.2013.05.011

    ZHANG Jinlong. Anti-sloughing drilling fluid technology of deep formation in offshore of Shengli Oilfield[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 40–42. doi: 10.3969/j.issn.1001-5620.2013.05.011

  • 期刊类型引用(5)

    1. 王遵察,程万,艾昆,胡清海,石育钊. 井工厂井网部署与压裂模式发展现状与展望. 钻探工程. 2024(03): 9-19 . 百度学术
    2. 曹刚,白璐,马洪亮,张新臣. 大井丛多层系立体开发钻井一体化设计技术在HQ802建产区的研究与应用. 石化技术. 2023(09): 32-33+3 . 百度学术
    3. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
    4. 沈兆超,霍如军,郁燕飞,董易凡,倪小伟,雷宇. 苏里格南区块小井眼井二开一趟钻钻井技术. 石油钻探技术. 2020(06): 15-20 . 本站查看
    5. 刘乃震,何凯,叶成林. 地质工程一体化在苏里格致密气藏开发中的应用. 中国石油勘探. 2017(01): 53-60 . 百度学术

    其他类型引用(1)

图(13)  /  表(2)
计量
  • 文章访问数:  1512
  • HTML全文浏览量:  742
  • PDF下载量:  102
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-01-22
  • 修回日期:  2019-09-29
  • 网络出版日期:  2019-10-20
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回