Loading [MathJax]/jax/output/SVG/jax.js

指向式旋转导向系统内外环转速对PDC钻头破岩效率的影响

张光伟, 高嗣土, 乔阳, 田帆

张光伟, 高嗣土, 乔阳, 田帆. 指向式旋转导向系统内外环转速对PDC钻头破岩效率的影响[J]. 石油钻探技术, 2019, 47(6): 27-33. DOI: 10.11911/syztjs.2019096
引用本文: 张光伟, 高嗣土, 乔阳, 田帆. 指向式旋转导向系统内外环转速对PDC钻头破岩效率的影响[J]. 石油钻探技术, 2019, 47(6): 27-33. DOI: 10.11911/syztjs.2019096
ZHANG Guangwei, GAO Situ, QIAO Yang, TIAN Fan. Influence of the Rotary Speeds of the Internal and External Rings of Pointed Rotary Steering System on the Rock-Breaking Efficiency of PDC Bit[J]. Petroleum Drilling Techniques, 2019, 47(6): 27-33. DOI: 10.11911/syztjs.2019096
Citation: ZHANG Guangwei, GAO Situ, QIAO Yang, TIAN Fan. Influence of the Rotary Speeds of the Internal and External Rings of Pointed Rotary Steering System on the Rock-Breaking Efficiency of PDC Bit[J]. Petroleum Drilling Techniques, 2019, 47(6): 27-33. DOI: 10.11911/syztjs.2019096

指向式旋转导向系统内外环转速对PDC钻头破岩效率的影响

基金项目: 国家自然科学基金项目“井下闭环可控弯接头导向机构基础理论研究”(编号:51174164)、陕西省自然科学基金项目“基于旋转导向钻井技术的井下闭环可控弯接头系统动力学特性研究”(编号:2018JM5015)联合资助
详细信息
    作者简介:

    张光伟(1961—),男,江苏无锡人,1983年毕业于西安交通大学动力机械专业,1990年获西安交通大学工程力学专业硕士学位,教授,主要从事石油机械力学分析与计算方面的研究工作。E-mail:zhang-guangwei@163.com

  • 中图分类号: TE921+.2

Influence of the Rotary Speeds of the Internal and External Rings of Pointed Rotary Steering System on the Rock-Breaking Efficiency of PDC Bit

  • 摘要:

    为了提高指向式旋转导向钻井工具的破岩效率,在钻头运动学研究的基础上,利用Matlab软件建立了数字化PDC钻头模型和数字化岩石模型,结合岩石模型的离散化处理,模拟了旋转导向钻进条件下,PDC钻头与岩石的相互作用过程,并给出了破岩效率的定量计算方法;分析了指向式旋转导向系统内外偏心环转速对PDC钻头破岩效率的影响,得到了不同时间步长下的破岩规律。研究结果表明,抗剪强度为11 MPa、内摩擦角为22°、摩擦系数为0.2的岩石,其最佳破岩转速比在1.0左右,且指向式旋转导向系统在钻进过程中均存在稳态切削,其破岩效率与内外偏心环的转速比密切相关,随着内外偏心环转速比增大,破岩效率也相应增大,但最终趋于稳定。研究结果对提高指向式旋转导向系统的钻井效率具有一定的理论指导作用。

    Abstract:

    The goal was to improve the rock-breaking efficiency of the pointed rotary steering drilling system. To do so, a new process was developed, based on the research of bit kinematics, the digital PDC bit model and the digital rock model. The team used Matlab software, which, combined with the discretization processing of rock model, was able to simulate the interaction between PDC bit and rock under the condition of rotary steering drilling, and further obtain the quantitative calculation method of rock-breaking efficiency. The influence of the rotary speeds of the internal and external rings of pointed rotary steering system on rock-breaking efficiency of PDC bit was analyzed, and the rock-breaking law at different time steps was obtained. The results showed that for the rock with a shear strength of 11 MPa, an internal friction angle of 22º and a friction coefficient of 0.2, it had an optimal rock-breaking speed ratio of about 1.0, and the pointed rotary steering system presented a steady state cutting during the drilling process. Its rock-breaking efficiency was closely related to the speed ratio of the inner and outer eccentric rings. As the speed ratio increased, the rock-breaking efficiency also increased, but it eventually stabilized. The research results demonstrated a possible theoretical guidance for improving the drilling efficiency of pointed rotary steering system.

  • 图  1   切削齿工作面数字化方法及模型

    Figure  1.   Digitization method and model of cutting tooth surface

    图  2   切削齿侧面数字化方法及模型

    Figure  2.   Digitization method and model of cutting tooth side

    图  3   规径齿数字化方法及模型

    Figure  3.   Digitization method and model of gauge teeth

    图  4   PDC钻头的数字化模型

    Figure  4.   Digital model of PDC bit

    图  5   岩石数字化方法及模型

    Figure  5.   Digitization method and model of rock

    图  6   齿面节点与岩石的相互作用关系

    Figure  6.   Interaction between tooth surface nodes and rock

    图  7   齿刃与齿面工作区域

    Figure  7.   Tooth blade working area and tooth surface working area

    图  8   可控弯接头的结构

    1.外偏心环驱动电机;2.外偏心环连接法兰;3.外偏心环; 4.内偏心环;5.内偏心环连接法兰;6.内偏心环驱动电机;7.导向轴;8.扭矩传递机构;9.密封结构;10.球座;11.旋转外套

    Figure  8.   Structure of the controllable bending joint

    图  9   导向机构运动模型简化示意

    Figure  9.   Schematic diagram of the movement model of the steering mechanism

    图  10   外部单齿在m=2(ω3ω1+1)时的切削面积

    Figure  10.   Cutting area of external single teeth at the time m=2(ω3ω1+1)

    图  11   外部单齿在m=0.5时的切削面积

    Figure  11.   Cutting area of external single teeth at m=0.5

    图  12   外部单齿在m=1.0时的切削面积

    Figure  12.   Cutting area of external single teeth at m=1.0

    图  13   外部单齿在不同转速比下的切削体积

    Figure  13.   Cutting volumes of the external single tooth at different speed ratios

  • [1] 田志欣,李文金,雷鸿,等. 大位移定向钻井工艺在PY10–8/5油田的应用[J]. 石油钻采工艺, 2017, 39(1): 42–46.

    TIAN Zhixin, LI Wenjin, LEI Hong, et al. Application of extended-reach directional well drilling technology in PY10-8/5 Oilfield[J]. Oil Drilling & Production Technology, 2017, 39(1): 42–46.

    [2] 许礼儒,李一岚,陈川平. 元坝121H 超深水平井钻井技术[J]. 断块油气田, 2015, 22(3): 388–393.

    XU Liru, LI Yilan, CHEN Chuanping. Drilling technology of Yuanba 121H ultra-deep horizontal well[J]. Fault-Block Oil & Gas Field, 2015, 22(3): 388–393.

    [3] 丁红,宋朝晖,袁鑫伟,等. 哈拉哈塘超深定向井钻井技术[J]. 石油钻探技术, 2018, 46(4): 30–35.

    DING Hong, SONG Zhaohui, YUAN Xinwei, et al. Drilling technology for ultra-deep directional wells in the Halahatang Area[J]. Petroleum Drilling Techniques, 2018, 46(4): 30–35.

    [4] 薛启龙,丁青山,黄蕾蕾. 旋转导向钻井技术最新进展及发展趋势[J]. 石油机械, 2013, 41(7): 1–6. doi: 10.3969/j.issn.1001-4578.2013.07.001

    XUE Qilong, DING Qingshan, HUANG Leilei. The latest progress and development trend of rotary steering drilling technology[J]. China Petroleum Machinery, 2013, 41(7): 1–6. doi: 10.3969/j.issn.1001-4578.2013.07.001

    [5] 刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术, 2018, 46(6): 59–64.

    LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(6): 59–64.

    [6] 刘鹏飞,和鹏飞,李凡, 等. Power Drive Archer型旋转导向系统在绥中油田应用[J]. 石油矿场机械, 2014, 43(6): 65–68. doi: 10.3969/j.issn.1001-3482.2014.06.017

    LIU Pengfei, HE Pengfei, LI Fan, et al. Application of Power Drive Archer in Suizhong Oilfield[J]. Oil Field Equipment, 2014, 43(6): 65–68. doi: 10.3969/j.issn.1001-3482.2014.06.017

    [7]

    PERSSON P O, STRANG G. A simple mesh generator in MATLAB[J]. SIAM Review, 2004, 46(2): 329–345. doi: 10.1137/S0036144503429121

    [8]

    PERSSON P O. Mesh generation for implicit geometries[D]. Cambridge Massachusetts: Massachusetts Institute of Technology, 2005.

    [9] 肖仕红. PDC钻头与岩石互作用过程的计算机仿真[D]. 成都: 西南石油学院, 2004.

    XIAO Shihong. Computer simulation of interaction process between PDC bit and rock[D]. Chengdu: Southwest Petroleum Institute, 2004.

    [10] 杨迎新,杨燕,陈欣伟,等. PDC钻头复合钻进破岩机理及个性化设计探讨[J]. 地下空间与工程学报, 2019, 15(2): 565–575.

    YANG Yingxin, YANG Yan, CHEN Xinwei, et al. Discussion on rock-breaking mechanism and individuation design of PDC drill bit in compound drilling[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 565–575.

    [11] 吴泽兵,马德坤,况雨春. 钻柱、钻头与岩石系统计算机仿真[J]. 系统仿真学报, 2000, 12(6): 675–677. doi: 10.3969/j.issn.1004-731X.2000.06.027

    WU Zebing, MA Dekun, KUANG Yuchun. Computer simulation of drill string, bit and rock system[J]. Journal of System Simulation, 2000, 12(6): 675–677. doi: 10.3969/j.issn.1004-731X.2000.06.027

    [12] 肖仕红,杨迎新. PDC钻头在复杂运动条件下钻进过程仿真[J]. 石油矿场机械, 2005, 34(2): 40–42. doi: 10.3969/j.issn.1001-3482.2005.02.010

    XIAO Shihong, YANG Yingxin. The computer simulation of the drilling progress between the PDC bit and rock[J]. Oil Field Equipment, 2005, 34(2): 40–42. doi: 10.3969/j.issn.1001-3482.2005.02.010

    [13]

    GLOWKA D A. Use of single-cutter data in the analysis of PDC bit designs: part 2: development and use of the PDCWEAR computer code[J]. Journal of Petroleum Technology, 1989, 41(8): 850–859. doi: 10.2118/19309-PA

    [14] 况雨春,董宗正,伍开松,等. 三牙轮钻头数字化钻进仿真评价系统开发及应用[J]. 石油钻探技术, 2013, 41(1): 103–107. doi: 10.3969/j.issn.1001-0890.2013.01.020

    KUANG Yuchun, DONG Zongzheng, WU Kaisong, et al. Development and application of numerical simulation system for three-cone bit drilling[J]. Petroleum Drilling Techniques, 2013, 41(1): 103–107. doi: 10.3969/j.issn.1001-0890.2013.01.020

    [15] 陈欣伟.复合钻井PDC钻头破岩机理研究[D].成都: 西南石油大学, 2016.

    CHEN Xinwei. Study on rock breaking mechanism of composite drilling PDC bit[D]. Chengdu: Southwest Petroleum University, 2016.

    [16] 张光伟,刘畅. 可控弯接头钻井工具的偏心机构控制仿真实验[J]. 石油钻采工艺, 2017, 39(6): 723–729.

    ZHANG Guangwei, LIU Chang. Simulation experiment on the control method for eccentric mechanism of the drilling tool with variable angle bent sub[J]. Oil Drilling & Production Technology, 2017, 39(6): 723–729.

    [17] 王可可.井下闭环可控弯接头的设计和仿真分析[D].西安: 西安石油大学, 2013.

    WANG Keke. Design and simulation analysis of closed loop controllable bending joints[D]. Xi’an: Xi’an Shiyou University, 2013.

  • 期刊类型引用(18)

    1. 焦卫国,王健,杨凤春,李志刚. 钻井提速技术在GT1井的综合应用. 石油工程建设. 2024(S1): 39-42 . 百度学术
    2. 赵洪波,朱芝同,梁涛,赵志涛,朱迪斯,单文军,刘文武,何远信. 页岩气基础地质调查钻井技术研究进展及展望. 中国地质. 2023(02): 376-394 . 百度学术
    3. 徐建飞,邹德永,高栋梁,王震. 切削-犁削-磨削混合金刚石钻头的研制及应用. 科技通报. 2022(10): 16-19 . 百度学术
    4. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    5. 王滨,邹德永,李军,杨宏伟,黄涛. 深部及复杂地层中PDC钻头综合改进方法. 石油钻采工艺. 2018(01): 44-51 . 百度学术
    6. 刘笑傲,邹德永,陈修平. 强研磨性硬地层金钢石复合汽钻头孕镶块混合钻头优化设计试验. 科学技术与工程. 2017(29): 220-226 . 百度学术
    7. 郭宝林,孙庆春. 鸭西背斜钻井提速技术试验及效果分析. 探矿工程(岩土钻掘工程). 2017(02): 53-56 . 百度学术
    8. 陈彦霖,邹德永,马宇奔,王滨. PDC-孕镶块混合齿钻头同轨布齿出露高差试验优选. 钻采工艺. 2017(02): 14-16+76+5-6 . 百度学术
    9. 董佳辉,殷忠玲. 基于微钻试验台检测系统的研究与设计. 自动化与仪器仪表. 2017(11): 75-77 . 百度学术
    10. 袁军,邹德永,刘笑傲. 切向导入式旋流喷嘴辅助PDC钻头破岩实验. 断块油气田. 2016(04): 528-532 . 百度学术
    11. 袁军,邹德永,钟洪娇,刘笑傲. 适合于研磨性硬地层的新型孕镶金刚石钻头优化设计试验研究. 科学技术与工程. 2016(04): 16-21 . 百度学术
    12. 吴仲华,温林荣,丁世清,何育光,赵哲龙,付晓颖. 孕镶金刚石钻头配合螺杆钻具在乌参1井应用. 石油矿场机械. 2016(05): 83-87 . 百度学术
    13. 谭凯文,肖华平,刘书海. 4种钻采装备的减磨抗磨损技术研究进展. 石油矿场机械. 2016(05): 102-110 . 百度学术
    14. 杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 . 百度学术
    15. 郭宝林,孙庆春,于建克,安川. 鸭K区块钻井提速与钻头使用分析. 天然气与石油. 2016(06): 60-65+145 . 百度学术
    16. 邹德永,郭玉龙,赵建,陈修平,王家骏,于金平. 锥形PDC单齿破岩试验研究. 石油钻探技术. 2015(01): 122-125 . 本站查看
    17. 关舒伟. 新型孕镶金刚石钻头研制及试验. 石油钻探技术. 2015(04): 129-132 . 本站查看
    18. 陈修平,邹德永,李东杰,娄尔标. PDC钻头防泥包性能数值模拟研究. 石油钻探技术. 2015(06): 108-113 . 本站查看

    其他类型引用(1)

图(13)
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  654
  • PDF下载量:  112
  • 被引次数: 19
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2019-08-22
  • 网络出版日期:  2019-09-05
  • 刊出日期:  2019-10-31

目录

    /

    返回文章
    返回